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How to use this book v

1h

How to use this book

Structure of the book

This book coversallthematerialfor Topic 10 (Discrete Mathematics Option) of the HigherLevel

Mathematics syllabus for the International Baccalaureate course.It is
largely independent of the

material from the Core topics,soit can be studied at any point during the course.The
only required

parts of the core are proof by
induction (Syllabus Topic 1.4) and sequences and series

(Syllabus

Topic 1.1). We have tried to includein the main text
only

the material that will be examinable.
Thereare

many interesting applications and ideas that go beyond the
syllabus

and we have tried to

highlight someof thesein the 'From another perspective' and 'Research explorer'boxes.

The book is split into three blocks. Chapters2 to 5 covernumber
theory, chapters 6 and 7 graph

theory and chapter8 sequencesand recurrence relations. The chapters within each block arebest
studiedin the order given, but the three blocksare

largely independent of each other. Chapter 1
introducessomemethodsofmathematical proof that are required throughout the course,and
shouldbecovered first. Chapter 9 contains a summary of all the topicsand further examination

practice, with many of the questionsmixingseveraltopics- a favourite trick in IB examinations. *

Each chapter starts with a list of learning objectives to
give you an idea about what the chapter

contains.Thereis an introductory problem at the start of the topicthat illustrates what you should

be able to do after you have completed the topic. You should not expectto beable to solve the

problem at the start, but
you may want to think about possible strategiesand what sort of new facts

and methods wouldhelpyou.
The solution to the introductory problem is providedat the end of

the topic, at the start of chapter9.

Key point boxes
The most important ideas and formulae are emphasisedin the 'KEY POINT' boxes. When the

formulae are given in the Formulabooklet,there will be an icon: ; if this icon is notpresent,then

the formulae are not in the Formula booklet and
you may need to learn them or at least know how

to derive them.

Worked examples
Eachworkedexampleissplitinto two columns. On the right is what you shouldwrite down.

Sometimes the example might include more detail then
you strictly need, but it is designed to

give

you an idea of what is required to scorefull method marks in examinations. However, mathematics
is about muchmorethan examinations and remembering methods. So, on the left of the worked

examples are notes that describe the thought processes and suggest which route
you

should use to

tackle the question. We hope that these will help you with any exercisequestionsthat differ from

the worked examples. It is very deliberatethat some of the questions require you to do morethan ,'

repeat the methods in the worked examples.Mathematicsis about thinking! '

lrsM
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* Signposts
\302\243 There are several boxes that appear throughout the book.

Theory of knowledge issues

*>\302\245

\\

\\

Every lesson is a Theory of knowledgelesson,but sometimes the links may not ^
be obvious. Mathematics is frequently used as an exampleof

certainty
and truth,

but this is often not thecase.In these boxes we will try to highlight some of the / f ^

weaknesses and ambiguities in mathematics as wellas showinghow

mathematics links to other areas of knowledge.

From another perspective
The International Baccalaureate\302\256 encourages looking at things in different ways.
As well as highlighting some international differences betweenmathematicians
theseboxes also look at other perspectives on the mathematicswe are covering:

historical, pragmatic and cultural.

Research explorer
As part of your course, you will be askedto write a reporton a mathematical
topicof

your
choice. It is sometimes difficult to know which topicsaresuitable as

a basis for such reports, and sowe have tried to show where a topic canactas a

jumping-off point for further work. Thiscanalso
give you ideas for an Extended

essay.Thereis a lotofgreatmathematicsout there!

Exam hint

Although we would encourageyou
to think of mathematics as more than just

learningin order to pass an examination, there are somecommonerrors it is

useful for you to be awareof. If thereisa commonpitfall we will try to highlight
it in these boxes.We also point out where graphical calculators can beused
effectively

to simplify a question or speed up your
work.

Fast forward / rewind

T^> Mathematicsis all about makinglinks.You might be interested to see how
L ^. somethingyou

have just learned will be used elsewherein thecourse,or
you

may need to go back and remind
yourself

of a previous topic. These boxes
indicateconnectionswith other sections of the book to help you

find your way
around.

<s

How to use the questions
Calculatoricon /

You will be allowed to use a graphicalcalculatorin the final examination paper
for this Option. Somequestions can be done in a particularly clever

way by

using one of the graphical calculatorfunctions.However, we recommend that

you try to answer somequestionswithout the aid of a calculator. These questions
aremarkedwith a non-calculator symbol.

x?
vi How to use this book
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v The colour-coding

The questions are colour-codedto
distinguish

between the levels.

Black questions are drill questions.They help you practise the methods described in the book,but

they are usually not structured like the questionsin the examination. This does not mean they are
'

easy,
some of them are quite tough. 7-

Each
differently

numbered drill question tests a different skill.Letteredsubparts of a question ^j
are of increasingdifficulty.

Within each lettered part there may be multipleroman-numeralparts
((i), (ii),...), all of which are of a similar

difficulty.
Unless you want to do lots of practicewewould

y
recommend that you only do one roman-numeral part and thencheck

your
answer. If you have

made a mistakethen
you may want to think about what wentwrongbefore

you try any more.

) Otherwise move on to thenextletteredpart.

*
^^ Green questions are examination-stylequestionswhich should be accessible to students on

the path to gettinga grade3or4.
Blue questions are harder examination-style questions. If you areaimingfor a grade 5 or 6 you
shouldbeableto make

significant progress through most of these.

Red questionsare at the very top end of difficulty in the examinations.If
you

can do these

then you are likelyto beoncoursefor a grade 7.

Gold questions are a type that are not set in the examination, but aredesignedto provoke

thinking and discussion in order to help you
to a better understanding of a particular

concept.
D

At the end of each chapter you will see longerquestions typical of the second section of
International Baccalaureate\302\256 examinations. These follow the same colour-coding scheme.

Of course,theseare just guidelines. If you are aiming for a grade 6, do not be surprised if
you

find

a green question you cannot do. Peoplearenever equally good at all areas of the
syllabus. Equally,

if you can do all the red questions that does not guarantee you will get a grade 7;after all, in the

examination you have to deal with time pressure and examination stress!

These questionsaregradedrelative to our experience of the final examination,sowhen you first

start the course you will find all the questionsrelatively hard, but by the end of the course
they

should seem more straightforward. Do not get intimidated!

We hope you find the Discrete Mathematics Option an interestingand enriching course. You

might also find it quite challenging,but do not get intimidated, frequently topics onlymakesense
after lots of revision and practice. Persevere and

you
will succeed.

The author team \302\273

r
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Introduction

In this Option yo will earn:

\342\200\242about different methods of proof used in mathematics

\342\200\242about divisibility of integers, and why prime numbersare so
important

\342\200\242how to find integer solutions of linear equations in two variables (Diophantine

equations)

\342\200\242how to find a remainder when one integer is dividedby another, and how to perform
calculations and solveequationswith remainders (modular arithmetic)

\342\200\242about various properties of remainders, including the Chinese RemainderTheorem and

Fermat's Little Theorem

\342\200\242about a new mathematical structure called a graph, which consists of points joined by
lines, and can be usedto modelnetworks

\342\200\242how to solve optimisation problems on graphs, for example finding the shortest route

between two points
\342\200\242how to find a formula for a sequence given by a recurrence relation.

Introductory problem

Supposeyou
have a large supply of 20 cent and 30centstamps.Inhow many different ways

can you make up $5postage?

Discretemathematics includes several branches of mathematics concerned with the
study

of

structures which are discrete, rather than continuous.Thismeansthat they are made up of discrete

(separate)objects,such as whole numbers or vertices of a cube,ratherthan continuous quantities

such as distance or time (representedby
real numbers). Some aspects of discrete mathematics,

mainly
the theory of whole numbers, date back to

antiquity. Many of the areas started developing
in the 17th

century
and only found substantial applications in the 20th. Oneofthemaindrivers

behind recent developments in the subject is its use in computer science, as computers are

fundamentally
discrete machines.

Five branches of Discrete Mathematicsarestudiedwithin the IB syllabus:

Number Theory is the first part of this option. It is concerned with properties ofwholenumbers,
particularly divisibility and prime numbers. Number theory wasstudied

by
Greek mathematicians,

especially around the 3rd century AD, and a little bit later by Indian and Islamicmathematicians.
Oneofthe main topics of interest was Diophantine equations-

equations where we are only
interested in integer solutions.We will study these in chapter 4 of this option.Number

theory
has

held the interest of mathematicians all over the world for many centuries. This is because it is full

of problems that have remained unsolved for a long time. Some examples of these problemsare:
the Goldbach conjecture (that every even integer greaterthan 2 isa sumof two primes); the twin

prime conjecture (that there are
infinitely many pairs of consecutive odd numbers which are

Introduction
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bothprime);and Fermats Last Theorem (that there are no integerssatisfying
xn + yn \342\200\224zn when

n is greater than 2), which was first stated in 1637 but only provedin the 1990s.Prime numbers

are a topic of active researchbecause
they

have recently found applications in cryptography, but
there arestill

many things we don't know about their distribution and how to find them.

Recurrence relations are equations that describe how to getfromoneterm in a sequence to the

next. Given a recurrence relationand a sufficient number of starting terms wecanusetheserules

to build up the sequence. However, for analysing the behaviour of the sequence it is moreuseful to

know how the value of each termdependson its position in the sequence. Finding an equation for

the nth term of a sequence can be
remarkably

difficult and in many cases even impossible.In the
final chapter of this option we will learn how to solvesome

types
of recurrence relations. We will

also use recurrence relationsto solve counting problems and model financial situations
involving

compound interest and debt repayment.

Logic is the
study

of rules and principles of reasoning and structureofarguments.It isa partof
bothmathematicsand philosophy. As well as being of philosophicalinterest,it is importantin
electronic circuit design, computer science and the

study
of artificial intelligence. Within the IB

syllabus,logiciscoveredin Mathematical Studies and in Theory of Knowledge.

Graph Theory is concerned with problems that can be modelledon a network. This is when a

set of points arejoinedby lines, possibly with a length assigned to each line.These
graphs

could

represent road networks, molecular structures, electroniccircuitsor
planning flowcharts, for

example. One class of problems involves studying the properties of graphs, such asvarious
ways

of

getting from one point to another.Another importantclassisoptimisation problems, where graph

theory is required to developan algorithmto find, for example, the shortest possible route between
two points, or the optimal sequence of operationsto completea taskin the shortest possible time.

This is very different from continuous optimisation problems, which are solvedusingcalculus.
Graph theory was first studied in the 18th century,but

many
of the developments are more recent

and have applications in such diverse fields as computer science,physics, chemistry, sociology and

linguistics. We will study graph theory in thesecondpart of this option.

Group Theory is an abstract
study

of the underlying structure of a collectionof objects,rather
than objects themselves. For example, counting hours on a 12-hourclock,rotations by 30\302\260,and

remainders when numbers are divided by 12allhave the same structure, in that they repeat after

12 steps. Group theory is an exampleof how a singleabstractmathematicalconcept can be applied

in many concrete situations.It is importantwithin mathematics in the theory of polynomial
equationsand topology (thestudy

of certain properties of shapes), but it alsohas applicationsin
physics and chemistry because it can be used to describe symmetries. Groupsarecoveredin the

Sets, Relations and Groups option.

In the first chapter of this option we will introduce variousmethodsofproofwhich will be needed

in subsequent chapters. Chapters2-5 coverNumber
theory, chapters 6 and 7 Graph theory, and

chapter8Recurrencerelations. Chapter 9 contains a selection of examination-stylequestions,
someofwhich combine material from different chapters.

lj 2 Introduction

1h
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Methods

of proof

In this chapter you
will learn:

\342\200\242
proof by contradiction

\342\200\242the pigeonhole principle

\342\200\242
strong induction.

+G

As we have discussedin the introduction,DiscreteMathematics

deals with both the properties of large systems (such as graphs
with many points and lines)and properties of natural numbers

(of which there are
infinitely many). In such systems it is

impossible to checkallpossiblecases,sohow can we be certain

about what is true?Inmathematics,truth is established through

proof, which is a sequenceof logicalstepsleadingfromknown

facts or assumptions to new conclusions.

We have used proofs throughout this course to derivenew
results:

Double-angled identities, the derivative of x2 and the

quadratic formulaaresomeexamples. Most of these were

direct proofs, this meansthat we started from some results

we alreadyknewand derived new results by direct calculation.
However,therearesome mathematical results that cannot

be proved in this
way.

One of the most quoted examples is
theproofthat v2 is an irrational number: sinceits decimal
expansionis infinite, we cannot show that it never repeats!

An alternative approach is to try and show that v2 cannot

be written as a fraction;but how can
you

show by direct

calculation that something cannot be done?In this situation we

need to use an indirect proof,where we find some roundabout

way of showingthat the statement must be true. For example,
we could

try
to see what would happen if v2 couldbewritten as

a fraction and hope that this leads to an impossibleconclusion;
this is called proof by contradiction.

You have alreadymetoneexample of indirect proof, proof

by induction, which is usedto show that a given statement is

true for all integers above a certain starting value. This involves

showingthat the statement is true for the starting number,and

that having proved it for some number we canalsoprove it for

the next one; we can thenconcludethat the statement can be

proved for all integers,evenifwe have only directly proved it for
the first one.

In this chapter we look in more detail at someindirectmethods

for proof which will be needed later in thecourse.

Can a mathematical

statement be true before it

has been proved?

A

>
If you have shown that

y something can be proved,
rather than proving it

directly, does that

establish its truth?

rsM
\342\200\242
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Proof by contradiction is
>

a special case of a more 1'
generalform of argument,

called reductio od

absurdum, in which a proposition
is disproved by showing that its

truth would lead to an impossible
conclusion.This type of argument
relies on the low of excluded
middle,which states that either a

proposition or its negation must

be true.

Proof by contradiction

Sometimesit is difficult to show directly that something must
be true,but it is much simpler to show that the opposite is

impossible. For example, suppose that we have an odd square
number n2 and we want to prove that n must alsobe an odd

number. It is not really obvioushow to start.We could try

taking the square root of n2, but we don't know whether this

producesan oddnumber(remember,this is what we are

trying to prove!). However,thinkingabout what would happen

if n was not an odd numberallows us to do some calculations:
If n wasnotoddit would be even, and the product of two
even numbers is alsoeven, so n2 would be even. But we were
told that n2 was odd, so this situation is impossible!We can

therefore conclude that n must be odd. This way of reasoning is

very common in all branches of mathematics,and is known as

proof by contradiction.

KEY POINT 1.1

+a

Proof by contradiction *y
was already used by 4fJjf^
Euclid around 300

BCE. One of the most

famous examples was his proof
that there are infinitely many

prime numbers (see Worked

example 2.15). Although it has

been a widely used tool in

mathematics since then, its

validity has been disputed by

some, most notably by the 20th

century Dutch mathematician and

philosopher L.E.J. Brouwer.

orked example 1.1

Proofby contradiction

You can prove that a statement is true
by showing that if

the opposite was true, it wouldcontradictsomeof
your

assumptions (or something else we already knowto betrue).

Oneofthe most cited examples of proof by contradictionis
the proofthat v2 is an irrational number. Rememberthat the

definition of an irrational number is that it cannot be written

in the form \342\200\224,where p and q are integers. It is difficult (if not

impossible) to express the fact that a number is not of a certain
form using an equation. Here proof by contradiction,wherewe

start by assuming that v2 is of the form \342\200\224,is a really useful tool.
1

Prove that v2 cannot be written in the form \342\200\224,where p,qeZ.
q

Try proof by contradiction: Start#

by writing v2 as a fraction and
show that this leads to impossible

consequences

The same fraction can be written in#

several ways (e.g. - = - =
\342\200\224)

so we should specify which one
we are using

Suppose that v2 = \342\200\224
with p,q e Z,

and that the fraction is in its simplest form so
that

p
and q have no common factors.

iAm*>AJ**
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continued...

We can now do some calculations \342\200\242

Looking for common factors is#

useful in solving problems involving

integers

We have reached a contradiction/
as we assumed that p and q had no

common factors

P2
Then \342\200\224= 2 (squaring both eldee), eo

p2
=

2q2-
\302\260l

This means that p2 \\e even, eo p must also be
even: p = 2r
Then

(2r)2=2f

=> 4r2 = 2<f
=>2r2 =

of

eo cf is even and therefore
c\\

is also even.

Hence p and
c\\

have common factor 2, which is a

contradiction.

So V2 cannot be written as \342\200\224.

1

We will use proof by contradiction to proveseveralresultsin

this option. The exercise below is intended to
give you some

practice in writing up this
type

of proof, but does not represent
typicalexaminationquestions.

Oneof the most

*SHG? fascinating examples of

proof by contradictionis

Cantor's diagonal proof, which

shows that it is impossible to

put all real numbers into an

(infinite) list.

Exercise 1A

+G

1. Prove that if n2 is an even integer than n is alsoan even integer.

2. Show that there are no positiveintegersx and y such that

X2 -
y2

= 1.

3. Prove that log2 5 is an irrationalnumber.

4. Prove that there is no largest even integer.

5. The mean age of five students is 18.Showthat at least one of

them must be at least 18 years old.

6. Show that the sum of a rational and an irrational numberis
irrational.

7. Prove the converse of Pythagoras' Theorem: If a,b,c arethe
sidesofa triangle and a2 + b2 \342\200\224c2, then G = 90\302\260.

t*J
'
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8. (a) Use your calculator to show that the equation x3 + x +1 = 0
has onerealroot,and find this root correct to 3 significant
figures.

(b) Prove that this root is irrational.

The pigeonhole principle *^f
is also known as

4fJjf^
Dirichlet's principle,
after the 19th century

German mathematician Gustav

Lejeune Dirichlet.

Pigeonhole principle
If

you
have a group of 367 people, you canbecertain that two of

them share a birthday.This is because there are at most 366 days
in a

year,
so if each person had a different birthday this would

account for at most 366people.This simple observation can be

a surprisingly powerfultool in solving seemingly very difficult

problems. It is traditionallystated in the
following

form:

KEY POINT 1.2

Pigeonhole principle

If n + 1pigeonsareplaced in n pigeonholes, then there is a

pigeonholewhich containsat least two pigeons.

+a

orked example 1.2

You are given 11 different real numbers between 1 and 100 inclusive. Use the pigeonhole
principle to show that two of those numbers differ by at most 10.

Since we have 1 1 numbers, to use#

the pigeonhole principle we need 10
'pigeonholes'

What is the largest possible difference\342\200\242

between two numbers in the same interval?

Divide the Interval [1,100] into 10
ec\\ua\\

Intervale:

1-10,11-20, ...,91-100

Since there are 11numbers, two of them must

be in the same Interval (by the pigeonhole
principle).

These two numbers differ by at the most 10.

Notice that we could alsohave proved the above claim by
contradiction.

Put the 11numbersin order, x1 < x2 <... < xu, and suppose that

each pair of consecutive numbers differ by more than 10. Then,
as xx

> 1, it follows that x2 > xx +10 > 11, x3 > x2 +10 > 21,and so

on, ending with xu > 101,which contradictsthe assumption that

all the numbers are between 1and 100.Hencethere must be

two of the numbers which differ by at most 10.

The pigeonhole principleitselfcanbeproved by contradiction.

A more general form of the principleis:

rsM

3$)
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KEY POINT 1.3

General pigeonhole principle

If kn + 1objectsare divided into n groups (some of which

may
be empty) then there is a group which containsat

least k + 1 objects.

orked example 1.3

Prove the general pigeonhole principle stated above.

We don't know anything about how the#

objectsare split into groups, so a direct

proof seems unlikely. So try a proof by
contradiction

Suppose that thestatementisfalse, so

each of the n groups contains at most k

objects.

Then the total number of objects can be at
most kn. This contradicts the assumption
about the number of objects.

Hence at least one of the groups must

contain at least k+ 1objects.

+G

Not all statementsthat can be proved using the pigeonhole
principlecan

easily
be proved by contradiction. The next

exampleusesthegeneralpigeonhole principle.

orked example 1.4

Nineteen points aredrawn inside a square of side 3 cm. Usethepigeonholeprinciple to show

that it is possible to find three pointsthat form a triangle with an area lessthan 1cm2.

We want one of the 'pigeonholes' to#
contain a triangle,sowe need to define 9

'pigeonholes' (since 2x9= 18)

What is the largest possible area of a#
trianglewhich is inside a square of

side 1 cm?

The square can be split into nine squares of

side 1 cm.
Since 19= 2x9 + 1, by the pigeonhole principle

there is one of these squares which contains

at least three of the points.

Thesethree
points

form a triangle with

area less than the area of the square, which

is 1 cm2.

It is not obviousthat we could prove the above statement by
contradiction.We can try assuming that all the triangles have

an area more than 1 and try to show that the total area is too

large, but sincesomeofthe triangles overlap it is difficult to say
anything

about their total area. This last exampleillustratesthe
powerofthepigeonholeprinciple in proving statements which

would be difficult to prove using any other method.

^ Q, VVj
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The pigeonhole principle is an example of a non-constructive existence proof. In the last >

example we found that a triangle with the required property exists, but not how to find it. Some
y

mathematicians dispute the validity of such proofs. Is it useful to know that something exists if we

don't know how to find it? Can an object be said to exist if there is no known method of finding

or constructing it?

\302\253^.
We will use the pigeonhole principle to prove some

\302\253^.
^^ theorems about graphs, see Worked example 6.1. ^^

Exercise IB

1. A bag contains sweets of five different colours.How
many

sweets

do you need to pick to be certainthat you have three of the same
colour?Prove

your
result using the pigeonhole principle.

2. Prove that among any 8 positive integers there are two whose

difference is divisible by 7.

3. Prove that if you pick five different integers between 1 and 8

(inclusive) then two of them must add up to 9.

4. Show that if 9 people are seated in a row of 12chairs,there

must be three consecutive occupied chairs.

5. Showthat among 91 positive integers it is possible to find 10
whosesumendsin a 0.

+a

6. There are n peopleat the party and some of them are friends.

(a) Explain why it is impossible that there is bothaperson
who is friends with everyone and a person who has no
friends at the party.

(b) Show that there are two people who have the same number
of friends.

7. Five points are drawn on the surface of an orange.Prove that

it is possible to cut the orangein half in sucha
way

that at least

four of the points areonthesamehemisphere (any points

lying along the cut count asbeingonbothhemispheres).

\342\200\242i*

The result in question 10 is
a special case of Ramsey's ^88

theorem, which deals with

colouring of graphs. It is often

stated in the following form: In

any group of six people, there
are eitherthreewho all know

each other, or three none of

whom know each other.

8. Each point in the planeiscolouredeither red or blue. Show that

there are two points of the same colour which are
exactly

1 cm apart.

9. 51 points are selectedinsidea squareofside1m.Show that it

is possible to find three of thosepointswhich lie inside a

circle of radius \342\200\224m.

7

10. Each side and diagonalof a regularhexagoniscolouredeither

red or blue. Show that there is a triangle with all three sides of

the same colour.

rsM
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|QP Strong induction

You will have learnt that some statements about positive

integers can be provedusingthePrincipleofmathematical

induction. The key idea in inductive proofs is that if we know

that the statement is truefora certainpositive integer, we can

use this to show that it is true for the next integer.This relies on

establishing a connection between the statementfor n and the

statement for n + 1.

However,sometimesthestatementfor n depends on more

than one previous value.One familiar example is the Fibonacci

sequence, defined by Fn
=

Fn_1 + Fn_2 with starting values

Fl
\342\200\224

F2
\342\200\2241. If we want to prove somethingabout Fn we need

information about both Fn_1 and Fn_2.

For example, let us prove that Fn < 2n for all n. First of all,the
formula Fn

\342\200\224
Fn_1 + Fn_2 only applies for n > 3, so weneedto start

by checking the two starting values: Fx -1 < 21 and F2
= 1 < 22.

Now suppose that we have checked that the statement is
true for all terms up to and including Fk_x for some k. Since

Fk
=

Fk_1 + Fk_2, we need to use the resultfor two previous terms.

As we are assuming that we have checked the statement up
to and includingFk_x, we can use the fact that Fk_x < 2k~l and

Fk_2<2k~2. Then:

Fk
= Fk-i + pk-2

<2k~l + 2k-2

=
2*\"2(2 + l)

<2fc\"2x4 = 2fc

This shows that Fk < 2k, so the statement is also true for n-k.

Thus we have shown that:

\342\200\242The statement Fn < 2n is true for n \342\200\2241 and n \342\200\2242.

\342\200\242If the statement is true for all n < k thenwe can show that it

is also true for n \342\200\224k.

It follows that the statement Fn < 2n is true for all positive
integersn, as we can reach any n by repeatingthestepsabove:
Usethe statements for n = 1 and n-2Xo proveit when n - 3,
then use the statements iovn \342\200\2242 and n \342\200\2243 to prove it

for n - 4, and soon.

This variant of proof by induction, where in the inductivestep
weneedto useseveralprevious values rather than just one, is
calledstronginduction.
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KEY POINT l .4

Strong induction

Supposethat we have a statement (or rule) about a positiveintegern. Ifwe can show that:

(a) the statement is trueforsomenumber of base cases, and

(b) assuming that the statement is true for all n<k,we can show that it is also true for n-k
(this is calledthe inductive step)

then the statement is true for all positive integers n.

Note that the number ofbasecasesneeded depends on how

many previous terms are requiredto calculatethe next term in

the sequence. In our exampleabove, each term was found by

using two previousterms,sowe needed two base values.

Sometimes the inductive steprequiressomeofthe previous terms,

but we don't necessarilyknowwhichones.We then really need to

know that the statement is true for all previous values of n. This is
wherethe methodof

strong
induction is particularly useful.

orked example 1.5

+a

Use
strong

induction to show that every positive integer n canbewritten in the form

n = 2pcv+
1p~xcv_x

+... + 2q + c0
where p e N and each q is either 0 or 1.

It is not immediately obvious how1

many base cases we need,solook

at the inductive step first

There is no obvious connectionf

between n = k and any particular

previous terms.However, as the

required expression involves powers
of 2, we may be able to establish a

connectionbetween k and _
2

If k is even we can relate k to - \302\253

2

Multiply this by 2 to get km

Inductive step:

Suppose that we have proved the statement for all

n< k, and look at n = k.

Conelder two separate oaeee\\ k can be either even

or odd.

If k le even, then \342\200\224
le an Integer leee than k,

k
so we know that the statement letrue fom = \342\200\224

:
2

for some p and cy-0 or 1.

Then

k =
2^cp +

2?cv_y
+... + 22q + 2c0

which is also of the required form.

rsM
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continued...

If k is odd, we can relate k to \342\200\224^-\342\200\242\342\200\242

2

To get k we need to double*

and add 1

Remember that we have not done a \342\200\242

base case yet: we can get to n = 2

and n = 3 by using n = 1, so we

only need one base case

Always write a conclusion \342\200\242

k \342\200\224\\
If k is odd, is an Integer \\eee than k, so we know

k \342\200\2241
that the statement is true for n = :

2

^
= 2'cp+2P-1cH+ ... + 2q + c0

for eomep and c = 0 or 1.

Then

k =
2{2Pcp+2P-'cp_,

+ ... +2c,+c0)+ /\\

=
2P+'cp+2Pcp_,

+ ... + 22c,+2c0+\\
which is also of the correct form.

Thereforethe statementis true for n = k.

E3asecaee:
When n = 1, take p = 0 and

c0
= \\to get the

requiredform.

Conclusion:

The statement is true for n \342\200\224\\, and if it is true for

a\\\\ n< k then we can show that it isalsotrue for

n = k. Hence the statement istrue for all integers

n > 1 by strong Induction.

^ A V^^^^^^^^t^^^iA^ ,^fc._Ajt -^-n (^

+a

To prove the statement for each value of k in the above example,
weusedoneofthe previous values. The value used depended on
k;soto prove the statement for n = 10 and n = 11we used n = 5

and to proveit for n = 31 we used n = 15.This is why we needed

to assume that the statement was true for all previousvalues of n.

The form from the previousexampleiscalledthe binary

^^form,
or base 2 representation ofn. It isa specialcase

of<^^
^^ a number base, which we will investigate in more detail ^^

in chapter3.

Exercise 1C

In this exercise, n is a natural number.

1. Given that a0=2yal=5 and an+2
=

5an+1
- 6an, show that

a=2n + 3n.

2. A sequence is defined by an+3
=

3an+2
-

3an+l + an with

ax \342\200\224
0,a2

= l,a3 = 4. Prove that for all n, an = (n-l) .

t*J
'

^^VNOC,

1Methods of proof
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3. The sequence xn is defined by x1 = l,x2=2 and
*\302\253

=
(n

~
l)(*n-l + *n-2) \342\226\240Show that Xn-fl\\

Fermat studied the
numbers from question 4

in the 17th century and
believedthat they were all prime.
(He only checked the first four!) It

was only 100 years later that

Euler proved that
F5

is in fact

divisible by 641. It is not known

whether any other Fermat

numbers are prime.

Fermat numbers are defined
by Fn

= 22\" +1 for n>\\. Prove that

all Fermat numbers exceptfor the first one end in a 7.

The sequence Gn is defined by G1 = 1,G2= 2,G3= 3 and

Gn+3
= Gn+2 + Gn+l + Gn. Show that for all n>l,Gn< 2n.

Showthat any amount of postage greater than or equalto
12cents can be made using only 4 cent and 5 centstamps.

Show that for all integers n > 2, the numbercos \342\200\224
is

irrational.

+a

8. Letu0 = 1and un
\342\200\224

un_x + un_2 +... + u2+ul+ 2u0 forn>\\. Show
thatun

= 2n for alln e N.

9. Showthat n straight lines divide the plane into at

most 2n regions.

12 Topic 10 -
Option: Discrete mathematics
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Divisibility

and
prime

numbers

Whole numbers can always be added, subtracted and multiplied
and the result is a whole number. The onlybasicoperation
that does not always result in a whole number is division.For
this reason, looking at factors is an important tool in solving

problems in number theory. Some of the materialin this chapter

will be familiar to you already,
but some of the more abstract

results
may

be new. You are expected to be ableto prove many

of these results. The proofs are alsoexamplesoftechniquesyou

will need to use in later chapters.

ES9 Factors, multiples and remainders
Much of number theory is concerned with finding factorsor
multiples of numbers, or looking at remainders when numbers
cannotbedivided exactly. In this section we review some of
thebasic

terminology
and properties relevant to division and

the
divisibility

of whole numbers. Throughout this chapter, by
'number'we mean a whole number (integer).

Consider two numbers, a and b. If thereisa numberk such that

b = kawe can write a \\ b and say that:

a divides b,
or b is divisible by a,

or a is a factor of b,
or b is a multiple of a.

Note that a ^ 0 as we cannot divide
by zero, but that b = 0 is

possibleand in fact a | 0 for all a.

KEY POINT 2.1

Some basic properties of divisibility:
\342\200\242If a | b and a \\ c then a\\(b\302\261c).

\342\200\242If a | b then a \\ (be) for any number c.

Note that 1 is a factor of every number, and that every number

is a factor of itself.When talking about factors, we will always
specify whether we want to include 1 and the number itself.

We can always find numbers k and r suchthat:

b \342\200\224ka + r and 0 < r < a

In this chapter you
will learn:

\342\200\242about factors and

multiples, including
the greatest common
divisorand the least
common multiple

\342\200\242a method for finding
the greatest common
divisorof two large

numbers (the Euclidean

algorithm)

\342\200\242various useful

properties of factors

and multiples
\342\200\242

why prime numbers

are so important.

j i

>
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In chapter 4 we will
examineother rules

l^>for working with ]^>
remainders, called
modulararithmetic.

In chapter 3 you will

prove divisibility

]^> tests for numbers
]^>

written in bases
other than 10.

We call k the quotient and r theremainderwhen b is divided

by a. Note that r = 0 if and only ifa\\b, and in that case we can

write b = ka.

The processof
finding

k and r is called the division algorithm.
Although

it seems very simple, writing b as ka + r or ka is

surprisingly useful when proving other results.

As division can be a long process, it is usefulto have ways of

deciding whether one number dividesanotherwithout having

to perform the division. For divisibilityby many small numbers

there are divisibility tests which usethe
digits

of the number to

be divided.

KEY POINT 2.2

Divisibility tests using last digits:
\342\200\242A number is divisible by 2 if its last digit is even.

\342\200\242A number is divisible by 5 if its last digit is 0 or 5.
\342\200\242A number is divisible by 10 if its last digit is 0.

\342\200\242A number is divisible by 4 if the numberformed
by

its

last two digits is divisible by4.

\342\200\242A number is divisible by 8 if the numberformed
by

its

last three digits is divisible by 8.

Divisibility
test using all the digits:

\342\200\242A number is divisible by 3 if the sumofits
digits

is

divisible by 3.

\342\200\242A number is divisible by 9 if the sumofits
digits

is

divisible by 9.

\342\200\242A number is divisible by 11 if the alternatingsum of

its digits is divisible by 11.(Soifthenumberhas digits

al,a2,a3... we calculate the sum ax
\342\200\224

a2 + a3 -...)

We will now prove some of the divisibilitytests listedabove.You

could be asked to reproduce those proofs in an exambut, more

importantly, they are examples of types ofproofusedin number

theory, and you will be asked to produce proofswith similar

structure and using similar techniques.

In orderto derive those proofs we need a way of expressinga
number

using
its digits.

KEY POINT 2.3

If AT is a /c-digit number with digits ak,ak_x.
' then:

N =
lOkak+10k-lak_1 + ... + 102a2+10a1+a0.

We use shorthandN =
(akak x...a2a1a0).

1

.. a2, a^, wq

1-

1H
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Prove that a number is divisible by 4 if and only if the numberformed
by

its last two digits is

divisible by 4.

This is an 'if and only iP statement\342\200\242

so we have two things to prove.

Knowing something about the last two

digits gives us a way to start, so first

prove 'if the number formed by the
last two digits is divisible by 4, then

the whole number is divisible by 4'

As the statement is about digits\342\200\242

of N, it makes sense to write

N = [akak_}...a2a}a0)

Separatethe last two digits*

We are told that the last 2 digits\342\200\242\342\200\242

(0^0), that is lOO] + o0/ is divisible
by 4. This means that we can write

it as 4A/I for some number A/I (it's not

important what A/I is)

When proving divisibility, it is usually
\342\200\242

a good idea to take out common
factors.All the terms in the first

bracket have a factor of 100

But 100 is divisible by 4, so both
\342\200\242*

terms are divisible by 4

We now need to prove the other \342\200\242

direction. It is a good idea to try and

reverse the previous proof (and only

look for an alternative strategy if this

doesn't work)

So we write N in terms of its digits\342\200\242

and separate the last two digits

We can see that the first part is#

divisible by 4. We have also assumed

that N is divisible by 4. If 4 | (b + c)
and 4 I b then it must be that 4 | c

(i) Let N be a number such that the number

formed by its \\aet two digits is divisible by 4.

Frove that N is divisible by 4.

Let N = \\0kak + 10^%^ +... +102a2+ \\0ay + a0

\342\226\240\342\226\240(\\0kak+\\0k-'ak_,+...
+ \\02a2) + (\\0a,+a0)

= (/\\0kak+/\\0k-'ak_,+...+
/\\02a2)

+ 4M

= 100(l0^2%+10M%_1+... + a2)+ 4M

As 4 1100, both parts are divisible by 4, eo N is

divisible by 4.

(ii) Let Nbe a number which is divisible by 4. Frove

that the number formed by its last two digits is
divisible by 4.

Let

N = \\0kak + \\0k-yak_y +... + 102a2 + \\0ay + a0

=
{\\0kak

+ 10fc-1flfc_! +... + 102a2) + (10^ + a0)

= 100
(I0fc~2 ak+\\Ok-Z)ak_^+... + a2) + {\\0a^+a0)

As 4 I N and 4 1100, it follows

that4l(10fll+fl0>

* )

^^%\302\253.

2 Divisibility and prime numbers 15

vs.

.0



(a * *~
-+*<;

I V

+n

EXAM HINT

To prove a statement of the form 'A if and only if B' you need
to produce two separate proofs: if A then B, and if B then A.

Often (but not always) the two different directions use similar

techniques.

The proofs for divisibility by 3, 9 and 11 use the
following

results, which follow from the Factor Theorem.

KEY POINT 2.4
I

|
For any integer power n, an \342\200\224bn has a factor (a-b).

I For any odd power n, an + bn has a factor (a + b).

+G

orked example2.2

Prove that if a number is divisible by 9 thenthesumofits
digits is divisible by 9.

It seems sensible to write the#

number in terms of its digits
and then separate the sum of

the digits

All the brackets after the first\342\200\242

one are of the form (10 -1),
sowe can use the result

from Key point 2.4 with

0 = 10,5 = 1

But we are told that N is#
divisibleby 9, so the first

bracket must also be

divisible by 9

Let
N =

/\\Okak +10fc\"1flfc_1 + ... + 102a2 + 10^ +a0
Then

N =
(ak +ak_i + ... + a1 +a0) + (/\\Ok -\\)ak +(lOfc_1 -1)%^ +...

+ (102-1)02+(10-1)0!

Each term of the form (10p -1) hae a factor of (10-1)
= 9,

eo a\\\\ terms after the first bracket are divisible by 9.

As N is divisible by 9, (ak + %_-, +... + a-, + a0) must also be
divisible by 9.

^ 4̂

See the end of the

]^> next sectionfor the
]^>

proof of this result

You can use thesametechnique to show that if the sum of the

digitsis divisible by 9 then the number is divisible
by

9. The

proofs for divisibility by 3 and 11follow a similar argument.

We can combine thesebasic
divisibility

tests to check for

divisibility by other numbers.In doingso,we use the following

result, which we will provein thenextsection.
KEY POINT 2.5

If a | AT and b \\ AT, and if a and b have no commonfactors
(otherthan 1), then (ab) \\ N.

A?
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orked example 2.3

Find the possible valuesof digitsp and q such that the five-digit number (386pq)is
divisible by 18.

As 1 8 = 2 x 9, for divisibility by 1 8 it is

sufficient that the number is divisible by
both 2 and 9

We know the divisibility tests for 2 and*

for 9

As p and q are digits, they are both
*

between 0 and 9, which limits the

possibilities

We can now combine this with the fact*

that q is even

We need \"5&6pq to be divisible by 2 and by 9.

Divisibility by 2: q is an even digit
Divisibility by 9: 3 + 8+6 +p +

q
= 9k

<^\\7 +p+q=9k

But 0<p +
ci<\\&,

so p + o[
= \\ or \\0.

Ifp+q
= 1:

If p+q
= 10:

q = 4, p = 6

q
= 6, p

= 4

q = &, p
= 2

+a

As well as showingthat a specific number is divisible by
something,we cansometimesprove that a whole class of
numbers is divisible by a given number. Two main methods
usedin such proofs are:

\342\200\242
factorising, in particular the difference of two squaresand
theresultsof

Key point 2.4

\342\200\242
proof by induction.

The following example illustratestheuseoffactorising:

^ 4

orked example2.4

If n is an odd integer, prove that n2 -1 is divisible by 8.

We can factorise n2 -1 using the difference\342\200\242

of two squares

Since 8 = 2x4, hopefully we can show*

that one of the factors is divisible by 2 and
the other one by 4. Remember that n is

odd, and that every other even number is

divisible by 4

H2 - 1 = (n - 1) (H + 1)

(n
\342\200\224

1) and (n + 1)are two consecutive even

integers, so they are both divisible by 2, and

one of them is divisible by 4.

Hence their productis divisible by 2 x 4 = &,

ae required.

f\302\273it*

^ Q,
vv,-V
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The next example shows a proof by induction. You have already

seen such questions in the corecourse,but they can also be

asked in this option.

+a

orked example2.5

Prove by induction that for every positive integer n, 2n+2 + 32n+1 is divisible by 7.

We follow the standard format of proof by#

induction, so start by checking the case
n= 1

If a number is divisible by 7, it can be#

written as 7a for some integera. This may

be useful in a later calculation

Relate to the expression for n = k*

We need to use the assumption for n = /c. \342\200\242

The easiest way is to express one of the

terms using equation (*)

Remember to write the conclusion1

When h = 1:

23+33=35 = 5x7

So it is true for n \342\200\224\\.

Assume it is true for n = k: Then

2k+2+32k+'=7a (*)
for some integer a.

Then for n = k+V.

rpn+Z , rz2n+1 _ pk+3 . r^Zk+Z)

= 2x2k+z+9x3ZM

= 2 x (7a - 32M)+ 9 x 32M using (*)

= 14a+ 7x3ZM

Both terms are divisible by 7, so the whole

expression is divisible by 7.

Hence it is true for n = k +1.

As the expressionis divisible by 7 when n = 1,

and if it divisible by 7 for \302\253= k then it is also
divisible by 7 for n = k +1, it follows that the

expression
is divisible by 7 for all n e Z+ by

the Principle of Mathematical induction.

Exercise 2A

1. Check whether eachofthesenumbers is divisible by 3,4 and 11:

(a) (i) 333444 (ii) 33334444

(b) (i) 515151 (ii) 5151515

(c) (i) 123456 (ii) 8765432

(d) (i) 515152 (ii) 747472

2. Findthe missingdigits
so that the given number is divisible

by
36:

(a) (i) (32a4fc) (ii) (llc65&)

(b) (i) (613c&) (ii) (2213ab)

rsM
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Find
digits

a and b so that the number (2006ab) is
divisible by 33. [7 marks]

Q Showthat the number 19581958 1958 (400 digits) is
divisible by 22 but not by 44. [6 marks]

Given two positive integers p, q such that p \\ q, show that

pk | gfc for eveiy positive integer k. [5 marks]

1-

1H

0 Show that for all values of n the number n4 + 12n2 + 35 has at

least two factors (otherthan 1 and itself). [3 marks]

Prove by inductionthat 5n -1 is divisible by 4 for all
valuesof n. [6marks]

Q (a) Explain why every positive integercanbewritten in one of

the following four forms:4k, 4/c \302\2611, 4/c + 2.

(b) Hence prove that a square number takes the form 4/c or

4/c + l.

(c) Prove that a square number can only be of the form 8/c,

8A; +1 or 8A;+ 4. [8 marks]

Q Findallthree
digit

numbers which have the hundreds and the
units digitsequaland which are divisible by 15. [5 marks]

1

J For which values of n is the number 111-41 divisible by

(a) 9? ndigits

(b) 11? [4 marks]

+G Number N is givenin termsofits
digits

as:

N = 10fcaJfc+10fc-1aJfc_1+ ... + 102a2+10a1+a0
Show that N is divisible by 11 if and

only
if

%-%-i+%-2-\342\200\242\342\200\242\342\200\242+ (-!) ^0

is divisible by 11. [8marks]

Prove by induction that 7n + 4n +1 is divisible

by6forallneZ+. [8 marks]

13 Greatest common divisor and least
common multiple

In the previous section we used the result from
Key point

2.5, which only applies when two numbers donot have any

common factors. For many results in number theory it is
importantto know the common factors of two numbers.

?3n
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The gcd is also called

the higWco^J
factor,

or hcf, but the

IB uses notation

gcd (a, b).

See Euclidean

]^> algorithm in
]^>

Section 2C.

^Your
calculator

\302\243nfind the greatest

common divisor,

which is useful

for checking yo^

answers.

The greatest common divisor (gcd) of a and b is the largest
numberd which divides both a and b. We write d \342\200\224

gcd(a,b).

For example, gcd(4,6) = 2 and gcd(l2,35)=1.Two numbers are

called relatively prime (or coprime) if theirgcdis 1(sothey

have no common factors other than 1).Forexample,12and 35

are relatively prime.

One way to find gcd(a,b) is to list all the factorsofa and

b. A slightly more efficient way is to list
only

the prime

factors. For example, 36 = 2x2x3x3 and 90 = 2x3x3x5,

so gcd(36,90) = 2x3x3 = 18.
Finding prime factors can

be difficult, so in the nextsectionwe will see an alternative

method, which is of moreusewith larger numbers.

The greatest common divisor has someimportantproperties
which you can use to prove other results.Theproofsof these
propertiesthemselves have been required on examination

papers in the past, sowe will show one of the proofs here. You

should try to understand the thought processesand strategies
involved in theses proofs, as they can be appliedto proving

other results.

1-

1H

+G

orked example 2.6

Prove that if gcd (a, b) \342\200\224d then gcd
a b

d d
= 1.

It is a good idea to write some sort of
\342\200\242

equation relating a, b and d. As d divides

both a and b we can write a = md and

b=nd

Give gcd(m, n) a name and try to find out#

something about it, using definitions of m

and n

This shows that both a and b have fd as#
a factor. But we know that the largest

common factor of a and b is d

Remember that f = gcd(m, n), and we*
wanted to know that this is 1

We can write a = md and b = nd. Then we need
to show that Qcd(m,n)

= /i.

Suppose gcd (m,n) = f. Then m- pf and

n =
oft, eo a = pfd and b =

oftd.

This meane that fd d'wldee both a and b.

However, the largest number that d'wldee

both a and b is d, eo fd < d.

Hencef < 1. E3ut f is a positive Integer,
eof \342\200\224\\, ae required.

rsM
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The above example says that if we divide two numbers by
their greatestcommondivisor, the resulting numbers are

relatively prime.

Thereare two further important properties which tell us what

happens to the gcdwhen we subtract two numbers. All three

results are summarisedbelow:

KEY POINT 2.6

| If gcd(a,b) = d then:

\342\200\242
gcd \342\200\224,\342\200\224=1

I
b

U d)

I
\342\200\242

gcd(a,a-b)
= d

I \342\200\242
gcd(b,a

-
qb)

= d for any q e Z

Let us return to theresultin Key point 2.5: if a and b both
divide N and if gcd(a,b) = 1,then ab alsodivides N. For

example, 6 and 5 both divide 600 so 30 (= 6 x 5) alsodivides

600. However, 6 and 4 both divide36,but 24 (= 6 x 4) does not.
Sotheconditionthat gcd(a,b)

= 1 is necessary for the result
to

apply.
Notice that 12 does divide 36, and 12isthesmallest

number which is divisible by both 4 and 6.

This leads us to another important concept. The least common
multiple(1cm) of a and b is the smallestnumber/ such that

both a and b divide /. We write / = lcm(a,b). For example,
lcm(4,6)=12and 1cm (5,6)

= 30. The above examplesuggests
the

following
extension of Key point 2.5.

KEY_PQJNI2.7

If a |N and b \\
N then lcm(ab) \\ N.

To prove this result we need to lookin more detail at the

properties of and relationshipbetween lcm and gcd.

We can find the lcm
by listing multiples of a and b until we find

a number whichis in both lists.A slightly better method is to use

primefactors.Forexample18= 2x3x3 and 120 = 2x2x2x3x5,
so

every multiple of both 18 and 120 must be divisible by 23, 32

and 5. Hence lcm(l8,120)= 23 x 32 x 5 = 360. A convenient way

to see what's going on is to draw a Venn diagram showing prime
factors of the two numbers.

The common prime factors are those in the intersectionofthe

two sets, so gcd (18,120) = 2 x 3= 6.

Any
common multiple must contain all the factorswhich

appearin at least one of the numbers, so thelcmis the

product of all the prime factors in the unionofthe two sets,

lcm(l8,120)
= 23 x32 x 5 = 360.Noticethat 6x360 = 2160 and

18x120 = 2160.This is one example of a very important result.

, - 3rvV%
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KEY POINT 2.8

gcd(a,fr) x 1cm (a, b)= ab

Oncewe have found gcd(a,fo), this result can be usedto find the

1cm. The proof of this result has oftenappearedon examination
papers,and it is also an example of a more complexnumber
theory proof you may be asked to produce.

1-

1H

+G

orked example 2.7

Prove that gcd(a,b) x lcm(a,b) \342\200\224ab.

We can write a = mdand b= nd with
*

gcd (m,n)
= 1

We know two things about IcmlO/b):it'
is a multiple of both a and b, and it is

the smallest such multiple. How can we
expressthe first fact?

How can n divide /cm? Remember that mm

and n have no common factors. We are

trying to get an expression in terms of a, b

and d

Now we use the fact that lcm(o,b) is the#
smallest possiblevalue of S. The smallest

possible value of q is 1

Let d = $cd(a,b)
Then a = md andb \342\200\224nd with gcd (m,n) = 1.

Let 5 be any multiple of both a and b. Then
ka

5 = ka and b\\ 5,eo \342\200\224is a whole number.

kind . . , , km .
Then is a whole number, eo \342\200\224is a

nd n

whole number.

As gcd(m,n)=1,n must divide k; eo k =
qn

for some q.
Hence

5 = ka =
qna

= qmnd = q
\342\200\224

As \\cm(a,b) is the smallest possiblevalue

of S, it corresponds to q =1.
Hence

\\cm(a,b)
= \342\200\224

V }
d

eo lcm(a,b) xqcd(a,b) = ab.

We can now prove the result of Key point 2.7.

orked example2.8

Prove that if a \\
N and b \\

N then 1cm (a, b) | N.

We almost proved this in Worked \342\200\242

example 2.7, as we have shown that any

common multiple of a and b can bewritten

as S =
q\342\200\224

for some q.

From the previousproof,
N =

q\342\200\224.
d

ab
But \342\200\224= lcm{a,b), eo lcm{a,b) divides N.

d
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In the special case when a and b are relatively prime, we get the
result from

Key point 2.5.

KEY POINT 2.9

If a andb

\342\200\242
lcm(

\342\200\242If a\\

are relatively prime then:

ayb)-ab.
N and b \\

N then ab \\ N.

Exercise 2B

1. Find the greatestcommondivisor and the least common

multiple for the
following pairs of numbers:

(a) (i) 36 and 68

(b) (i) 225 and 180

(c) (i) 56 and 81

(d) (i) 28 and 56

(e) (i) 64 and 72

(ii) 35 and 42

(ii) 360 and 135

(ii) 49 and 85

(ii) 35 and 105

(ii) 27 and 18

(f) (i) 6p2q and 9pq3 where p and q are prime numbers

(ii) 25pq2 and 15pq wherep and q are prime numbers

Verify that the resultsin
Key points 2.6 and 2.8 are true for the

following pairs of numbers:

(a) (i) 68 and 32 (ii) 56 and 21

(b) (i) 120and 60 (ii) 100 and 50

(c) (i) 35 and 16 (ii) 42 and 25

Let / = lcm(a,b)and write / = pa and / = qb. Prove that

gcd (p, q)
= 1. [7 marks]

+G If gcd(a,b)=1 prove that gcd(a + b,a-b) is

either 1or2. [6marks]

Prove that if a \\ (be) and gcd(a,b)
= 1 then a \\ c. [5 marks]

Q If d = gcd(a,b)and/is any
other common divisor of

a and b,prove that f\\d. [5 marks]

The Euclidean algorithm
In this section we describe another method for finding the

greatestcommondivisor of two numbers, one which is useful
for large numbers when prime factorisation is not feasible.

2 Divisibility and prime numbers
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The Euclidean algorithm *y
appears in Euclid's JF/T^

Elements, but it is

believed that it had been

known at least a century earlier.

It was later discovered

independently in both India and

China by astronomers trying to

solve equations needed to make
accurate calendars.

KEY POINT 2.10

The Euclidean algorithm for finding gcd(a, b) with a > b:

\342\200\242Find the remainder when a is divided
by

b. Call this rx.

\342\200\242Find the remainder when b is divided by rx. Call this r2.

\342\200\242Find the remainder when rx is divided by r2. Call this r3.

\342\200\242Continue this process, at each stage finding the
remainderwhen rn is divided byrn + 1.

\342\200\242The last non-zero remainder is gcd(a, b).
I

The method becomes much clearer when illustratedwith

an example.

orked example 2.9

Use the Euclidean
algorithm

to find gcd(102,72).

Start by finding the quotient and remainder*

when 102 is divided by 72

For the next step we are dividing 72 by 30. \342\200\242

Continue until there is no remainder

The gcd is the remainder on the#

penultimate line

102 = 1x72 + 30

72= 2x30+ 12

30 = 2x12 + 6
12= 2x6 + 0

.\\gcd(l02,72)
= 6

This result will be

\302\253^.
used in Section 4C

\302\253^.
^^ to solve Diophantine ^^

equations.

This method works because of the result from Key point 2.6,
which says that:

gcd(a, b) \342\200\224
gcd (b,a- qb).

But we can choosea value of q so that a- qb is the remainder
when a is divided by b, which we calledrx. So we have:

gcd (a, b) = gcd(b,rx)

An identical argument provides:

gcd(b, r1)= gcd(r1,r2)

And this continues in the same pattern. We can connect these

statements together so that, in Worked example 2.9 we have

gcd(102,72)=gcd(72,30)=
gcd(30, 12) = gcd(12, 6) = 6.

As well as finding the greatest common divisorof two

numbers, the Euclidean algorithm can be used to prove the
following important result.

KEYPOINT2.il

There exist integers m and n such that ma + nb \342\200\224
gcd(a,b).

The Euclidean algorithm provides a way of finding m and n, as

illustrated in the next example.

W
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orked example 2.10

Find integers m and n such that 102m + 72n \342\200\2246.

From the previous example, we can#
rearrangethe first line to express 30 in

terms of 102 and 72, then rearrange

the second line to express 12 in terms of

72 and 30, and so on. As we want an

expression for 6 in terms of 102 and 72,
we workbackfrom the penultimate line

6 = 30-2x12

= 30-2x(72-2x30)
=-2x72 + 5x30

= -2x72 + 5x(102-1x72)
= 5x102-7x72

.*. m = 5, n = -7

Note that this is not the only pair of such integers;for example,

m = -19, n = 27 is another
possibility.

In fact, we will see in

chapter 3 that there are infinitely many pairs of such numbers.

+a

Exercise 2C
1. Use the Euclidean algorithm to find gcd(a,b) in the

following

cases:

(a) a = 35,fc = 12

(b) a =122,fc= 39

(c) a = 63,fc = 42

(d) a =
320,fc

= 80

(e) a = 462,fo= 200

2. For each pair of numbers from the previousquestion,find

integers m and n such that ma + nb- gcd(a,b).

(a) Use the Euclidean algorithm to show that
gcd(86,45)

= 1.

(b) Find a pair of integersx and y such that

86.x + 45jy= 1. [7marks]

Let gcd(48,30)
= d. Find two integers, p and q> such

that 48p + 30q = d. [6marks]

Use the Euclidean algorithm to show that 3/c +1 and 13/c + 4
are

always relatively prime. [4 marks]

Given two positivecoprimeintegersa and b, show that it is

possible to find two consecutivepositiveintegerssuch that one

is a multiple of a and theothera multiple of b. [4 marks]

2 Divisibility and prime numbers
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Euclid's lemma appears \342\231\246y

in the Elements, a JfjJ^
collection of

mathematical results

written by Euclid of Alexandria
around 300BCE.Although best

known for the first formal

treatment of geometry, the

Elements also contain many

important number theory results.

With over a thousandeditions
published to date, it is believed to
be the second most published
book after the Bible.

9 Prime numbers
A prime number has exactly two factors, 1 and itself.Remember
that 1 is not a prime number, as it has

only
one factor. Numbers

which are not prime arecalledcomposite.Note that 2 is the

only even prime number,allotherprime numbers are odd.

When it comes to division,primenumbershave some

interesting properties which distinguish them from composite
numbers.Oneofthemostimportant ones is Euclid's lemma,

which states that if a prime divides a product of two numbers,
thenit must divide at least one of those numbers. Forexample,
600= 15 x 40 and we know that 31600, so 3 must divide either
15or40.Compositenumbers do not have this property: For

example,61600but it does not divide either 15 or 40.Thereare
two more related results.

KEY POINT 2.12

(i)

(ii)

(iii)

Ifp isa prime and p \\ mn then

If p is prime and p \\ c2 then p \\

If a and b are relatively prime
and b are square numbers.

p | m or p |n.

c and p21 c2.

and ab = c2,then botha

You will be expected to use these resultsto produceother
proofs,as in the following example.

+a

orked example 2.12

Show that it is impossible to find positivenumbersn and c such that n2 \342\200\224c2\342\200\224n.

If we put all terms with n on one side of an \342\200\242

equation, we may be able to factorise it

We have a result about ob = c2, but we*

need to check that the two numbers are

relatively prime. Two consecutive numbers

cannot have any common factors

^> n(n-/l)=c2

n and n -1 are coneecut'we numbers, eo they
are relatively prime. Hence both n and n -1 are

square numbers.

E3uttherearenttwo coneecut'we ec\\uare

numbers, eo such n and c do not exist.

Prime numbers are
'building

blocks' of arithmetic, as all

other numbers canbemade by multiplying together some

prime numbers. For example,360= 23 x 32 x 5; this is called
primefactorisation.

Every
whole number has a unique prime

factorisation,and this resultissoimportant that it is given
a name.

rsM
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KEY POINT 2.13

Fundamental Theorem of Arithmetic

Thereis
exactly

one way to write a given number N > 1 in

the form:

N=p1p2...pk

where p1<p2< ...<pk are primenumbers.

1-

1h

We order the prime factors p1 <
p2

< ... < pk for convenience,
so that there is no danger of thinking, for example, that

3x5x3 and 3x3x5 are two different factorisations. Some of

the p values can bethesame,and we usually write the prime
factorisation in a shortened form N =pilpp \342\200\242\342\200\242\342\200\242pmm-

It is important to note that the Fundamental Theorem of

Arithmetic really states two things:

1. Every positive integer greater than 1canbewritten as a

product of prime numbers.

2. Thereis
only

one way to do this.

You can provethis theorem
using

a combination of facts and
methods of proof you already know. The first statement can be
provedusingstrong

induction.

The syllabus
explicitly

mentions proving
the Fundamental

Theorem
of

Arithmetic
as an

example of strong

induction.

+G

^ 4

orked example 2.13

Prove that every positive integer greater than 1is eitherprime,or can be written as a product of
two or moreprimenumbers.

This is a statement which should be#
true for all positive integers, so it may

be possible to prove by induction. As
it is not possible to get from n to

n +1 using a multiplication by a prime

number, we may need to use strong

induction

Consider the two cases separately \342\200\242

We have related k to two numbers*
smaller than it, so we can apply the

inductive hypothesis

We should write a conclusion*

Vroof by strong induction.

The statement is true for n = 2, as 2 is a

prime
number.

Assume that the statement is true for all

n< kfor some k, i.e. every integer smaller than

k can be written as a product of primes.
Now look at k: It is either

prime,
or it is composite.

1. If k is prime, the statement is true for n = k.

2. If k is composite, by definition this means that
k has a factor other than 1 and k; call this

factor a. Then we can write k = ab.

E3ut a,b<k, so both a and b can be written as

products of primes. Multiplying
them together we

get k written as a product of primes. Hencethe
statementis true for n = k.

So the statement istrue for n = 2 and if it is true

for all n < k we can prove that it isalsotrue for

n = k; it is therefore true for all n > 2 by strong

induction.

^Sr.-v* +<*..
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Proof by contradic-
Hon was introduced
in Section1A.

The second part of the Fundamental Theoremof Arithmetic is a
littlemoredifficult to prove, and we need to use Euclid'slemma
from

Key point 2.12 combined with proof by contradiction.

+a

orked example2.14

Show that prime factorisation is unique, that is: any given integer N > 2 canbewritten as a

product of primes in only one
way.

We have already proved that N can be#

written as a productof primes. Now see

what happens if two such factorisations

were possible. This means that we are

using proof by contradiction

If there are some common factors in the#

two factorisations, we should cancel them

so they don't get in the way

If two sides are equal, any number that1

divides one side must also divide the other.

This is where it's important that p} is a

prime, and Euclid's lemma comes in

We have now reached a contradiction4

Froof by contradiction.

Suppose that N hae two different prime
factorleatlone:
N =

p,pz...pkandN
= q,qz...qm

withpi ^p2 <...<pkandq^ <q2 ^---%.

Sopip2---Pk =Wz---%
If there are eome common factors on both
eldee we can divide by them and then none

of the remaining pe are equal to any of the

remaining qe.

How conelder pv As it divides the left hand

side of the equation, it must also divide the

right hand side. E3y Euclid's lemma, p, must

divide one of the qe.
E3ut qe are all prime, so p, must be

ec^ual
to

one of the qe.

This is a contradiction, as we have assumed

that pe and qe are a\\\\ different,

rience it is impossible for N to have two

different prime factorleatlone.

f

Although we cannot predict

exactly how large the next

prime number will be, there
is an approximationto how

many primes there are up to a
given size. This result is called the
Prime NumberTheorem,and it

requires understanding of limits of

functions and integration.

As prime numbers aresoimportant, it would be nice to have an

easyway
of finding them. Unfortunately, the only way to check

whethera numberisprimeisto
try dividing it by all primes

smaller than it. (In fact, you only need to divide by all primes
< \\fn; can you see why?)

Primes have a very irregulardistribution:thereare pairs of

consecutive odd numbers which are prime,and there are also

long sequences of consecutivecompositenumbers.The second

of these claims can be proved relatively easily (see question 7

below). However, althoughnumericalexperimentssuggest
that

there are infinitely many pairs of consecutiveoddprimes,this

result (known as the Twin prime conjecture)has not
yet

been

proved. It is problems like this, with relatively simple statements

but elusive proofs, which have kept mathematicians fascinated

by prime numbers for centuries.
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We do know that there are
infinitely many prime numbers.

The first proof of this is attributed to the Greek mathematician

Euclid, and is anotherexampleofproofby
contradiction.

+ )

1<*

orked example 2.15

Prove that there are infinitely many prime numbers.

What would happen if there were only#

finitely many prime number? We assume

that is the case and see whether it leads to

an impossible conclusion

Howdo we characterisea prime number? \342\200\242

Try to find a number which does not satisfy'

either of the above conditions. Howcan
we makea number that is obviously not

divisible by any of the p-s?

We have reached an impossiblesituation/
sowe have made an incorrect assumption

somewhere

Supposetherearefinitely many prime

numbers: P\\>P2\"-->Pk.

This means that every integer greater
than 1 is either

ec\\ual
to one of the

p.x
values or

it is divisible by at least one of them.

Considerthe number

N =
p,p2...pk+/l

Clearly N ^
pj3

as it is larger than all of them.

Also, N gives remainder 1 when divided by

each
pj3

so it is not divisible by any of them.

E3utthis situation is impossible.

Hence our assumption that there are finitely

many primes was Incorrect, and so there are
infinitely many prime numbers.

J\\

+G

For many centuriesmathematicianshave been interested in

prime numbers, mainly becauseof the challengespresented
by proving their properties. But recently prime numbers have

become extremely important in many modern fieldssuchas
computerscience, cryptography and banking. Because their
distribution is sounpredictableand checking whether a number

is prime is
very time-consuming, primes are used in data

encryption. This encryption is vital to keeping personal data

secure when it is transmittedelectronically,for example over

the Internet.

It is also possible to prove
that there are infinitely

many prime numbers of

various types. For example,
there are infinitely many prime

numbers which give remainder
1 when divided by 4. Another

interesting result is the recently
provedGreen-Taotheorem,
which states that you can find an

arithmetic sequence of any given
length such that all of its terms

are prime.

If you would like to see some examples of use of prime numbers, find out about public key

cryptography.

^^VNOC,
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Exercise 2D

>1. Find the prime factorisation of the following numbers:

(a) (i) 120 (ii) 200

(b) (i) 172 (ii) 138

(c) (i) 155 (ii) 235
1-

(a) Write 846 as a product of primes.

(b) What is the smallest number that 846 must be multipliedby

to get:

(i) a square number?

(ii) a cubenumber? [6 marks]

Prove that a prime number can
only give remainder 1 or 5 when

divided
by

6. [5 marks]

Q (a) Showthat 51 a if and only if 51a2

(b) Show that if 3|fcthen9|fc2. [7 marks]

Showthat if n is an even number greaterthan 2 then2n -1

cannot be prime. [4 marks]

+G

Showthat there is no prime number p for which 2p +1 is a

square number. [6marks]

0 (a) Show that 10!+ 2 is divisible by 2 and that 10!+ 3 is

divisible by 3.

(b) Showthat the numbers 10!+ 2,10!+ 3,..., 10!+10 are all
composite.

(c) Show that there are 100 consecutive compositenumbers.

[8J This question leads you through one proof that v2 is an

irrational number.
P

(a) Any
rational number can be written in the form \342\200\224where

gcd(p,q)
= 1. Show that if yfl = \342\200\224then 41 p2.

q

(b) By writing p =
4/c, show that 41 q2.

(c) Deduce thatp and q have a common factor, and hence that

V2 cannot be written as a ratio of two coprime integers.
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Summary

If a divides b then b-ka for some integer k. We write a | b.

The division algorithm states that for any pair of numbers a and b we can find k and 0 < r <a
such that b-ka + r.

If AT is a /c-digit number with digits ak,ak_x ...a2,a1,a0 then:

N = 10fc%+10*-^.! +... + 102a2+10^+ a0

In proving theorems about divisibility we often use factorising and proof by induction.

For
any integer power n, an - bn has a factor {a - b).

For
any

odd power n, an + bn has a factor (a + b).

If a | AT and b \\ N> and if a and b have no commonfactors(otherthan 1), then (ab) \\ N.

The greatest common divisor, gcd(a,b), is thelargestnumberwhich divides both a and b.

The least commonmultiple,lcm(a,b), is the smallest number which both a and b divide.

gcd(a, b) x 1cm (a, b)- ab

You need to know how to proveand usethe
following

results:

(a b\\- if gcd(a,b) = d then gcd \342\200\224,\342\200\224
= 1

V^ d)

- gcd(a,b) = gcd(a,a-b)
- if

q is any integer then gcd (a, b) \342\200\224
gcd(b, a \342\200\224

bq)

- if a | N and b \\
N then lcm(a,b) | N.

gcd(a,b) can be found usingtheEuclideanalgorithm:

Write a \342\200\224
qb + r

Replace a by b and b by r, and repeat

Stop when r = 0

gcd(a,b)isthe previous value of r.

It is always possibleto find two numbers, m and n, such that am + bm- gcd(a,b).This can be

done by reversing the Euclideanalgorithm.
Ifp isa prime and p \\ mn then p \\ m or p \\ n.

lip is prime and p \\ c2 then p \\ c and p2\\c2.

If a and b are
relatively prime and ab = c2, then both a and b are square numbers.

The Fundamental Theorem of Arithmeticstatesthat every integer has a unique prime
factorisation.Toproveit, you

need to use strong induction and proof by
contradiction.

1-

w

h
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Mixed examination practice 2

o

Q

O

Q

B

O

a

Q

Q

Find all possible pairs of digits a and b such that the four digit number

(4alb) is divisible by 12. [7 marks]

(a) Use the Euclidean
algorithm

to show that 68 and 345 are
relatively prime.

(b) Find integers m and n such that 345m + 68n = 1. [7 marks]

UseEuclidean algorithm to show that gcd(l 1/c+ 7,5/c+ 3)=1for all

values of k. [4 marks]

(a) Write a4 - b4 as a product of threefactors.

(b) Show that, if a and b are both oddnumbers,then a4 - b4

is divisible by 8. [5marks]

(a) Show that if d \\ n then (3d -1) | (3n -1).

(b) Hence show that 312-1 is divisible by 26. [6 marks]

Show that if gcd(a,b) = d then
gcd(qa,qb) -qd. [4 marks]

If gcd(a,b) = 1,prove that gcd(a,bc)
= gcd(a,c). [4 marks]

(a) Prove that the product of two consecutive integers is
always

divisible by 2.

(b) Prove that the product of threeconsecutive integers is always divisible by 6.

(c) Showthat if n is odd, n3 - n is divisible by 24. [9marks]

Leta and b be two positive integers.

(a) Showthat gcd(a, b) x lcm(a, b) = ab

(b) Show that gcd(a, a + b) = gcd(a, b) [13marks]
(\302\251IB Organization 2005)
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Representation

of
integers

in

different bases

You may know that computer scientists use binary numbers.
This is a way of writing numbers using only

two digits, 0 and 1.

They alsousehexadecimal,a system with 16 digits. Throughout

history different cultures have used different number systems.
In this chapterwe will learn how to write numbers and perform
arithmeticin different bases.

In this chapter you
will learn:

\342\200\242how to represent

integers in bases other

than 10

\342\200\242how to perform
arithmetic in those bases

\342\200\242about divisibility tests in

different bases.

+G

How many fingers do we need to
count?

We use the decimal system to write numbers: this meansthat

when we write the number 635, the 5 representsfive units, the

3 represents three tens (30)and the6 representssix hundreds

(600). So 635 means 5 + 30+ 600.This is an example of a

number systemwhich usesplacevalue, so that the digits have
different meaningsdependingontheirpositionin the number.

People have not always written numbers in this
way.

For

example, in roman numerals V stands for 5 units, and there are
different symbols for 50 and 500. One advantage of the place
value system is that it is easy to perform written arithmetic,

because we can work with individual digitsratherthan with

entire numbers.

In our number system,as wemovefrom rightto left each

place is worth ten times more than the previous one. We say
that our number systemhas base10and it has ten digits, 0 to
9. This

system probably developed because we use our fingers
for counting, so moving onto the next digit in thenumber
correspondsto using

another pair of hands to count. It is
reasonableto imaginethat creatures with eight fingers would

write their numbersin base 8.

Just as in the decimal system,we useten
digits (0 to 9), in base

n we need n digits,0 to n - 1.This means that we can write

numbers 1to n - 1
using just one digit. The number n is written

as 10,becausethe T on the left is worth n units.Forexample in

base 8, only eight digits are needed:0 to 7.The number 8

3 Representation of integers in different bases 33
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Throughout history different Mf
cultures have used number

4fJ\302\245i

systems with different

bases, with bases 12, 20

and 60 being most common.

Although we now use the decimal
system for most purposes, the

duodecimal (base 12)system is still

present in measuring time: 12

months in a year and 24 hours in a

day. More recently, bases 2, 8 and
16 have been used when working

with computers. Base 2, or binary
number system, uses only two digits

(0 and 1), which correspond to the

two states (on and off) of electronic

switches. Bases 8 (octal)and 16
(hexadecimal) are used because

they are related to base 2 (for

example, a group of four binary

digits corresponds to one
hexadecimaldigit).

is thenwritten 10, number 9 is 11, and so on.Base8 number

63 corresponds to our number 51, because3+ (6x8)= 51.

The highest two-digit number in base 8 is 77,which is 63 in

the decimal system (because7+ 7x8 =63).To write numbers

larger than this in base 8 weneedthree
digits,

so 100 represents

number 64. As we move from right to left, each place is worth

eight times more than the previous one, so the base eight
number 254representsournumber172(4 units, 5 eights and 2

sixty-fours: 4 + 5X 8 + 2 X 82 = 172).

To avoid confusion when talking about numbersin different

bases, it is conventional to write thenumberin brackets with

the base in the subscript. So(63)8=(5l) , (77)
=

(63) and

(172)10=(254)8.

When reading out the numbersin bases other then 10 we say
them digit by digit, so for example (63) would be readas 'six-
three', not 'sixty-three'.

When we write numbers in basesgreaterthan 10 we use letters to

represent the extradigits.Forexample, in the hexadecimal system
the letter B stands for 'digit' 11, so the hexadecimal number (3B)
representsthe decimal number(59) (as 11 + 3x16 = 59).

+a

orkedexample3.1

Write
(1632)7

in base 10.

It is easiest to work from right to left, as we#

start with units

The units digit is 2

The secondplacerepresents sevens; there

are 3 of them

The third place represents forty-nines ( 72);

there are 6 of them

The next place represents 73 = 343

(1632)7=2 + 3x7 + 6x72+1x73

= (660\\0

Exercise 3A

1. Write down all the digits needed to write numbersin:

(a) (i) base 6 (ii) base 4

(b) (i) base12 (ii) base 15

rsM

2. Write the followingnumbersin base 10:

(a) (i) (23),

(b) (i) (471)8
W (i) (286)16

(d) (i) (4A)lfi
(e) (i) (DA6)16

(f) (i) (B25)12

3$)
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What is the largest base 10 number that can be written as a

three-digit number in base5? [3 marks]

How many numbers require 3 digitswhen written in base 12,

but 4 digits when written in base 9? [5 marks]

Changing between different bases

Toconvert from any base to base 10 wejustneedto remember

that in base n the place valuesarepowersofn.

Toconvert from base 10 to another base, n, weneedto write

the number in the form a1+a2xn + a3xn2+a4xn3...
where a^, a2 > a^... are digits between 0 and n-\\.

Thenextexampleillustrates how to do this.

For an example of
^py.

conversion to base ^^
^*M0 see Worked^**

example3.1.

We showed in

Worked example
1.5 that every integer

can be written in

<^[ base 2. We can show <^[
that any integer can
be converted into

any base, using a

similar proof.

+G

orked example3.2

Write
(862)

in base 7.

Write out powers of 7#

The largest power of 7 that goes into 862 is 343 \342\200\242

There are two 343s in 862, so the first digit is 2

There is 176 remaining

There are three 49s in 196 so the 2nd digit is 3 \342\200\242

How many 7's go into 29? \342\200\242

The next digit is 4

There is 1 unit left, so the units digits is 1 \342\200\242

We now just write down the digits, from left to right
\342\200\242

Fowere of 7:1, 7, 49, 343, 2401

562 \342\226\240*\342\226\240343 = 2, remainder176

176-^49 = 3, remainder29

29-^7=4, remainder 1

1-5-1 = 1

(062)1O=(2541)7

KEY POINT 3.1

To convert a base 10numberinto base n:

\342\200\242Find the largest power of n that goes into the number.
The quotient is the first digit.

\342\200\242Divide the remainder by the previous power of n to
find the next digit.

\342\200\242
Repeat until division by 1 has been done.

3 Representation of integers in different bases
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To convert from one base to any other base,it iseasiesttogo
via base 10.

orked example 3.3

Convert (9Al)n to base5.

First convert to base 10 \342\200\242

Write out powers of 5 up to 1200 \342\200\242

Start with the largest power of 5 below\342\200\242

1200, and do the divisions

Although we have remainder 0, we continue \342\200\242

and divide by 5 and 1

Read off the digits
\342\200\242

(9Al)fl
= 1 +10 x 11+ 9 x 112 =

(1200)1(

Fowere of 5:1, 5, 25,125,625

1200\342\226\240*\342\226\240625 = 1, remainder 575

575 +125 = 4, remainder 75

75 -s- 25 = 3, remainder 0

0-5-5= 0, remainder 0

0-5-1 = 0

.\342\226\240.(9^=04300)5

Exercise 3B

+a

1. Write the followingbase10numbers in the given base:

(a) (i) 62 in base2 (ii) 186 in base 3

(b) (i) 183in base7 (ii) 212 in base 5

(c) (i) 821in base 11 (ii) 601 in base 15

(d) (i) 1199in base 16 (ii) 4632 in base 20

2. Convertthe
following

numbers to the given base:

(a) (i) (I100l)2tobase3 (ii) (210012)3
to base 2

(b) (i) (5Al)l6 to base 2 (ii) (DB3)15
to base 3

(c) (i) (31442l)5tobasel5 (ii) (30132)4tobase16
(d) (i) (A5A)l2

to base 16 (ii) (F0F)16to base14

Given that 96 = 531441, write 531440 in base 9. [3marks]

Arithmetic in different bases

As we have already mentioned, one big advantage of a place
value system is that it is easy to perform written arithmetic.

However large the numbers are, we are
always working with

individual digits. Think how you add in base10:
you

add pairs

of digits, and if the answerexceeds9
you 'carry' to the next

position. We can use thesameprocessto add in any other base.

For example, workingin base7 you 'carry' when the answer

rsM
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exceeds 6. When workingin a baselargerthan 10, we may need

to 'translate' letters into numberswhen calculating.

orked example 3.4

Calculate (3A8) +(C19) .
\\ /16 \\ ^16

First add the units digits (Calculate this in base 10)
\342\200\242

#\302\253

Is the answer larger than 15?

Add the next pair of digits,plus the one carried from \342\200\242

above. Remember that A represents number 10

12 is C in base 16#

Add the next pair of digits. C stands for number 12#

15 is F in base 16 \342\200\242

> + 9 = 17

= 15+2
write 2, carry 1

10 + 1+ 1= 12

write C

3 + 12 = 15

write F

.\342\200\242.(3AS)16+(C19)16=(FC2)K

You can also set out your answerin the traditional column format.

orked example 3.5

Calculate (62) x(35) .

2x5 = 10 = 7 + 3, so write 3, carry 1.\342\200\242*

6x5 + l = 31 = (43)7

Write 0 as we are multiplying

*

by the 'sevens' digit

3x2 = 6
6x3 = 18=

(24)7

Add (433)7 + (2460)7 as in the previous
\342\200\242

example

X

2

4

4

6
3
3
1

6

2

5

3

0

3 2 2 3
1 1

.(62)7x(35)7=(3223)7

EXAM HINT

It is a good idea to check your answer by converting to base

10. You may also be able to use your calculator to work in

some common bases, but you must show your full working

and only use the calculator to check your answer.

rsM

\342\200\242 3 Representation of integers in different bases

?\302\243*\302\273.



(* * ^ ' v

c+^

In chapter 2 we saw that looking at digits of a number can
often tell us something about its factors. For example,a base10
number which ends in 0 is divisible by 10.We can derive similar

divisibility tests for other bases.As well as using these tests, you
can beaskedto prove them.

orked example 3.6

Show that if a base 15 number ends in 0, 5 orA then it is divisible by 5.

Let the digits be o]f a2, o3..., with o1 being
\342\200\242*

the units digit

All terms except for the first are divisible by#

15

Look at the first part and the last digit\342\200\242

separately

(...a5a2a^)15
=

ay + a2 x 15 + a5x 152+.

=15(a2+15xfl3+...)+^

The first part is always divisible by 5.

If ^ is 0,5 or A (which stands for 10), then it

is also divisible by 5, which makes the whole

number divisible by 5.

The divisibility test

^y* by 9 was proved in ^y*
^^ Worked example

^^

2.2.

The next exampleshowsa resultwhich is analogous to the

base 10 test for divisibility by 9. The proof follows the same
strategy.

+a

orked example 3.7

Show that if a base 7 number is divisible
by 6, then the sum of its digitsis alsodivisible by 6.

Write out the number using digits \342\200\242

If this is divisible by 6, we should be able to#

take out a factor of 6. We also want the sum

of its digits, so separate the expression into

o}+o2+... on and the rest

The terms of the form 7k -1 can be factorised
\342\200\242

as(7 -1) (...), so they all have a factor of 6

We want to show that the sum of the digits,
\342\200\242

which is the first bracket, is divisibleby 6

(anan_^ ...a^a^ =a, +a2 x7 + a5 x72 +...

+an x 7\"-1

=
(#! + &2 + % + \342\200\242\342\200\242-an ) +

[a2(7-l) + a3(72-l) + ...+
an(7\"-1-l)]

= (fl1+fl2+fl3+...fln) +

[a2 x6 + a5 x6(...) + ... + an x6(...)]

As the terms in the square bracket are all

divisible by 6, if the whole number is also

divisible by 6, then the sum of the digits is

divisible by 6.

i

j

W

38 Topic 10 -
Option: Discrete mathematics

?\302\243*\302\273.



(a * a-
i+s*

* V

The last Worked example illustrates a divisibilitytest that applies

in all bases.

KEY POINT 3.2

A base n number is divisible
by

n - 1 if and only if the sum
of its digitsis divisible by n - 1.

You are often askedto proveparticularcasesofthis

divisibility test.

+a

Exercise 3C

1. Do the
following

calculations in the given base. Check your
answers

by converting to base 10.

(a) (i) (324)6+(ll5)6 (ii) (152)6+(214)6
(b)(i) (6A2\\2+(BBl\\2 (ii) (A61)12+(13B)12

2. Do the following calculationsin the
given

base. Check your
answers by converting to base 10.

(a) (i) (22)yx(l6)7 (ii) (5l)7x(35)7

(b)(i) (2C)16x(4l)l6 (ii) (53)16x(A8)16

3. (a) If a base 7 number ends in 0, what must it be divisible by?

(b) If a base 12numberendsin 0, which numbers is it

divisible by?

(c) Inbase6,what is the criterion for a number to be
divisible by (36) ?

Q (a) Find thepossiblevalues of digit k so that the number

(3A5/c)14
is divisible by 7.

(b) What is the criterionfor a base 14 number to be divisible

by
13?

(c) Find the possible values of digitsk and m so that the

number (3Am/c)14 is divisible
by (91)10. [8 marks]

(a) Show that if the last digit of a base15number is 0, 3, 6, 9 or
C,thenthenumberis divisible by 3.

(b) Show that for a base 15number, if the number formed by
the last two digits is divisible by 9, then the wholenumberis
divisible by 9. [8 marks]

t*J
' 3 Representation of integers in different bases
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\\ Summary

\342\200\242To represent an integer in base n we use digits0 to n - 1.The place values are 1, n, n2, n3, etc.

(akak-i\"M3a2ai) ~ai +CL2n+ a3n2 + ... + aknk~l

\\ \342\200\242To convert from base 10 to base n, divide the number by powers of n, starting with the largest.
\342\200\242We can perform written addition and multiplicationin

any base, using the same column

method as in base10.
\342\200\242

Divisibility criteria in base n are similar to those for base10:

For divisibility by factors of n look at the last digit.

)
- A base n number is divisible

by
n - 1 if and only if the sumof its digits is divisible by n -1.

I
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Mixed examination practice 3

o

Q

Q

O

B

Q

Q

Q

(a) Write
(136)8

in base 10.

(b) Convert(l439)10tobase16.

(a) Convert
[AB2F)l6

to binary.

(b) Convert (l 1000l)2to base7.

(a) Write the number 41012 in base 8.

(b) Prove that if a number is divisible by 7 thenthe sum of its

base 8 digits is also divisible by 7.

(c) Use your answers to parts (a)and (b) to show that 41012 is
not divisible

by 7.

(a) Convert the number 84 from base 10to base5.

(b) Working in base 5, square your answerto part (a).
(c) Convert your answer to part (b) to a base 10number.

(a) Show that if a number is divisible
by

3 then in its representation
in base 6 the last digit is 0 or 3.

(b) In base 6, write down a criterion for thenumbertobedivisible

(c) Given that (2al04b)6 is divisible by 15find the possible

values of a and b.

(a) Convert the base 9 number 8415 to a decimalnumber.

(b) Prove that a base 9 number is divisible by 4 if the sum of its

digits is divisible by 4.

The positive integer N is expressedin base b as {akak_l.. .axa\302\247)y

(a) Show that N is divisible by b if and only if a0 = 0.

(b) Show that N is divisible by b2 if and only if a0=a1 = 0.

ThepositiveintegerNis expressed in base p as \\anan_x ..axaQ) .

(a) Show that when p = 2,N is even if and only if its last digit is 0.

(b) Show that when p = 3, N is evenif and
only

if the sum

of its digits is even.

[7marks]

[8 marks]

[11 marks]

[9 marks]

i

by 5.

[12 marks]

[8 marks]

[10 marks]

[11marks]
(\302\251IB Organization 2008)
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In this chapter you
will learn:

\342\200\242how to tell whether a
linear equation in two

variables has integer
solutions

\342\200\242how to find one

solution of such an
equation

\342\200\242that given one

solution, it is possible

to construct infinitely

many other solutions.

Linear

Diophantine

equations

Many practical problems involve solving equations which need

only integer solutions. Such equations are called Diophantine
equations.In this chapter we will learn how to solvelinear
Diophantine equations in two variables using some of the
resultswe met in chapter 2.

Examples of equations with integer
solutions

Can you solve the equation 2x + 3y = 5?

If x and y are real numbers, then for every x we can find y which
satisfiestheequation.Sothereare infinitely many solutions

of the form
/

Xy~

5-2x^1

V

integers then y =

3
5-2*

J
However, if we require x and y to be

will only be an integer for some values

ofx. We can find several solutions by inspection, for example

(1,1), (4,-1), (-2,3). There are still
infinitely many solution

pairs, but not all integervaluesofx will make y an integer; we

can onlyusethe values of x for which 5 - 2x is divisible by 3.

A bit of experimenting showsthat x has to be one more than a

multipleof 3.We can therefore write that all of the solutionsare
ofthe form (3/c +1,1 - 2k) for some integer k.

The above is an exampleof a linearDiophantineequation;
a linear equation in several variables where we

only
seek

integer solutions.

You will meet only linear Diophantineequations in this course,

but there are other
types.

It is often impossible to find all
the solutions,but it may be possible to prove whether or not
solutions exist, and if they do, whether there are

infinitely many

of them.

For example, we can show that the equation x2 -
y2

= 122

has no integer solutions as follows.Theexpressiononthe left

factorises as (x
- y){x+ y). The two factors differ by 2y, which

is an even number,so
they

must be either both even or both
odd.As their product is even, they must both be even. But

1-

1H

w

h
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the product of two even numbers is divisible by 4, which 122

is not. Hencesuchnumbersxand;/cannot exist. Looking at

factors and remainders is
very

useful when solving Diophantine

equations.

orked example 4.1

Show that the equation \\5x \342\200\224
35y

= 17 has no integer solutions.

Looking for factors is often useful: if two#

terms of this equation are divisibleby

a number, then the third term must be

divisible by the same number

15and 35 are both divisible by 5.

Hence 15x - 35y must be divisible by 5 for

\\a\\\\
x and y.

V is not divisible by 5, so 15x - 35ycannot

ec^ual
17.

A well known example of a Diophantineequationis
x2+

y2
= z2. This has infinitely many solutions,known

as Pythagoreantriples.Ontheotherhand, the equation

xn +
yn

- zn with n > 3 has no integersolutions.This is a

famous result called Fermat s Last Theorem.

+}[
In 1637, Fermat famously claimed, in a margin of a book, that he had a proof for

jfjk^ his theorem.Many mathematicians over the centuries tried to find a proof, but this
* was only accomplished in 1995 by Andrew Wiles, building on new theoriesdevelopedby

several mathematicians over preceding decades. Although the result itself has not found any
applications so far, the new theories developed during the search for the proof have turned out to be

extremely interesting and useful.

1-
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Exercise 4A

Explainwhy
the equation 6x + 9y = 137 has no integer

solutions.
[3marks]

(a) Find one integer solution of the equation15.x-12y= 18.

(b) Show that every pair of numbers of theform x = 2 + 4/c,

y = 1+ 5/c is a solution of the above equation.
[4 marks]

(a) Show that x = 1 + 3/c and y
= l-llk satisfy the

equation 1Ix+
3y

= 14 for all integers k.

(b) Showthat only one of those solutions has both x and y

positive.

[5 marks]

Darya has 15piecesofpaper.She selects several of those

pieces and cuts them into 10 pieces each. She then selects
some of the new small pieces and cuts them into 10pieces
each.She says that she now has 2007 piecesofpaper.Show

that she must have counted incorrectly.
[6 marks]

^ Q\342\200\236
\302\243*W
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[fT] (a) Show that for every pair of
relatively prime positive

integers m and n with m> n, the numbersx \342\200\224m2-n2,

y \342\200\2242mn and z \342\200\224m2+n2 satisfy the equation
x2 +

y2
\342\200\224z2. (This is a method for generating infinitely

many Pythagorean triples).

(b) Show that if a, b and c form a Pythagorean triple, then
sodoka, kb and kc for any integer k.

How many solutions are there?
We now look at techniques for solving linear Diophantine
equations in two variables. Before we search for solutions, we

need to find out whether
any

exist. It turns out that there is a

very simplecriterionfordecidingthis.

KEY POINT 4.1

\342\200\242The Diophantine equation ax +
by\342\200\224c has no

solutions if gcd(a,b) does not divide c.

\342\200\242If gcd(a,b) I c, the equation has infinitely many
solutions.

In Section4C we will

see that all solutions

\302\253^.
can be found starting \302\253^.

^^
from just one ^^

particularsolution.

The first part of this result is straightforward:Ifbothtermson
the left hand side are divisible by a number, then that number

has to divide the right hand sideaswell.

The second part really says two things: that whenever

gcd(a,b) I c we can find a solution; and that if there is one

solution then there are in fact infinitely many. We will first see
how to find one solution,and will return to the question of

infinitely many solutions in the next section.

To find one solutionwe can use the Euclidean algorithm from
the previoussection.We saw there that there are numbers m

and n such that am + bn \342\200\224
gcd(a,b). So if c = gcd(a,b), then m

and n are solutions of the equationax+by- c.

Diophantine equations have been studied throughout history and all over the world. The *^
earliestknown record is probably in Diophantus' Arithmetico from the 3rd century J^S^L
BCE. They were also studied by Sun Tzu in the 3rd century AD and Brahmagupta in

*?* +
*

the 7th century.

Ifc^d but dIc, then c-kd for some integer k. So the equation

is equivalent to ax + by \342\200\224kd. Since am + bn \342\200\224d, it follows that

a (km) + b(kn)\342\200\224kd, sox = km and y \342\200\224kn are solutions of the

equation ax +
by

- c.
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Option: Discrete mathematics



(* * ^
1^ ^ ^1 v

' V

c+^

orked example 4.2

(a) Find x andy such that 27.x + 15;/ \342\200\2243.

(b) Hence find one integer solution of the equation 21 x + 15;/ \342\200\22421.

Check whether gcd (27, 15) divides the#

RHS

Apply Euclidean algorithm
\342\200\242

Reverse the steps to write 3 = 27x + 15ym

As 21 = 3 x 7, we can use the answer'

from the previous part and multiply the

whole equation by 7

[a) gcd(27,15)= 3,sowe can find a solution

by Euclidean algorithm.

27 = 1x15 + 12
15=1x12+ 3

12 = 4x3 + 0

3 = 15-1x12
=15-1x(27-1x15)
= -1x27 + 2x15

So x = -1,y
= 2

(b) 27(-1) + 15(2) = 3
Multiply by 7: 27(-7) +15(14) = 21
So x=-7,y

= 14

In the next section we will see how to find all the solutionsof
linearDiophantine equations.

+a

Exercise 4B

1. Which of these equationshave integer solutions?

(a) 7x + 8;/ = 29 (b) 3x + 6;/ = 17

(c) 15*+ 27;/= 3 (d) 15*+ 27;/= 30

(e) 15*+ 27;/= 35 (f) 2bc + 37;/ = l

2. Usethe Euclidean algorithm to find one solution of the

followingDiophantineequations:
(a) (i) 45* + 20y = 5 (ii) 66*+

42y
= 6

(b) (i) 102*+ 72;/= 6 (ii) 165*+105;/=15

3. Find one solution of the following Diophantine equations:

(a) (i) 66*+ 20;/= 12 (ii) 45*+ 20;/= 25

(b) (i) 81* + 36y = 27 (ii) 100*+ 35y
= 15

Q (a) Findgcd(45,129).

(b) Henceexplainwhy
the equation 45.x +129y = 28

has no integersolutions. [5marks]

^
l 4 Linear Diophantine equations
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(a) Find gcd(132,78).

(b) For whichvaluesof cdoesthe equation 132.x + 78y \342\200\224c

have integer solutions?

(c) Find one solutionfor c = 6. [10 marks]

g (a) Forwhich values of X does the equation Ajc + 5y
= 7 have

integer solutions?

(b) Find one solution for X = 14. [8 marks]

+G

Finding the general solution
In the previous section we saw how to find one solutionofthe
equation ax + by \342\200\224c when gcd(a,b) divides c. For example,
we found that the equation 27.x +

\\5y
- 3 has a solution

x = -l,y = 2. This is called a particular solution. But there are

other solutions, for example x =
4yy

= \342\200\2247.How can we find all

such solutions?

In the above equation, if x is increased by a certain amount,y
needs to be decreased for the expressiononthe left to keep the

same value. So let x =-1+P,y
= 2 - Q. Then:

27(-l + P)+15(2-Q)= 3

<=> -27 + 27P + 30-15Q = 3

<=> 27P-15Q = 0

<=> 27P = 15Q

<=> 9P = 5Q

The last equation is satisfied by P = 5/c and Q-9k for any

integer /c. Hence the original equationhas solutionsoftheform

x = -1 + 5k, y = 2 - 2k for ke Z.
Note that on the last line of the abovederivationwe divided

by
3 which is gcd(27,15). This gives us thegeneralform for all

solutions of a linear Diophantineequation.

KEY POINT 4.2

If (x1,y1) is one solutionof the equation ax + by-c and

d \342\200\224
gcd(a,b) then all the other solutions are givenby:

kb ka

x-xx-\\ yy =
yx tor ke\302\243

d d

This is called the general solutionofthe Diophantine

equation.

We now have a complete method for solving linear Diophantine

equations.

rsM
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orked example 4.3

Use the result from Worked example 4.2 to find the general solutionof the equation
27*+15;/=21.

We have found one solution already
\342\200\242

To find the general solution we need#
gcd(o,b)

We can now use the formula \342\200\242

One solution \\e x = -7,y= 14

qcc\\ (27,15)
= 3

x = -7 + = -7 + 5/c
3

27k
y = 14 = 14- 9k* 3

Exercise 4C
1. Find the general solution of the following Diophantine

equations:
(a) (i) 45*+ 20;/ = 5 (ii) 66*+ 42;/= 6

(b) (i) 102*+ 72;/= 6 (ii) 165*+ 105;/= 15

(c) (i) 66*+ 20;/= 12 (ii) 45*+ 20;/= 25

(d) (i) 8bc + 36;/ = 27 (ii) 100x+35;/= 15

(a) Use the Euclidean algorithm to find gcd(162,78).

(b) Findthegeneralsolution of the equation

162*-78;/= 12. [11 marks]

+G
(a) Show that 55 and 38 are relatively prime.

(b) Findapairof
integers m, n such that 55m - 38n=1.

(c) Find a general solution of the Diophantine
equation55.x- 38;/= 1. [11 marks]

Find all pairs of points with integer coordinates in the x-y
plane which lieontheline 3x+

5y
= 13. [8 marks]

2\302\273J
Solutions subject to constraints

Sometimesa Diophantineequation is set in a context where
there aresomerestrictions on the types of solutions allowed.
One of themostcommon constraints is requiring all the

solutions to be positive.

t*J
'

?3n
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orked example 4.4

Show that the equation 75.x + 45;/ = 300 has
only

one solution with both x and y positive.

Noticethat we can divide the whole \342\200\242

equation by 15 to make the numbers
smaller

We can find the general solution in terms\342\200\242

of k and then look for the values of k for

which x, y > 0
In this case, we can find one solution by

inspection. (If you don't see it, use the

Euclidean algorithm)

Use the condition x > 0, y > 0*

5x+ 3y=20

Particular solution:

x = 1,y=5

General solution:

god (27,15) = 1

x = 1+ 3/c,y=3-5/c

x>0=>3/c>-1=>/c>0
y>0^>5>5/c^>/c<1

.\\k = 1, so there is only one positive solution

(* = 1,y=5).

Exercise 4D

+a

(a) Find one pair of integers x, y such that 5x + 8y = 42.

(b) Find all the solutions of the equation 5x + 8y = 42
with x, y positive integers. [11 marks]

(a) Find gcd(62,74).
(b) Find the general solution of the equation 62.x- 74y

\342\200\2242.

(c) Hence show that the above equationhas
infinitely many

solutions with both x and y positive. [13marks]

(a) Find the general solution of the Diophantineequation
132*+78;/=6.

(b) Find all the solutions with | x \\ < 20. [14 marks]

[4~J (a) You have a pair of scales with an unlimited
supply

of

12 g and 9 g weights.What weights of objects can you
measure using these?

(b) Could you measure more different weights if all the 12g
weights

are replaced by 13 g ones?

(c) If
you

are only allowed to put the weights on onesideof
the scales, how does that affect your answerto part (b)?
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Summary

\342\200\242The Diophantine equation ax + by-c has integersolutions if and only if d - gcd(a,b)divides c.

\342\200\242One solution (particular solution) can be found
by reversing the Euclidean algorithm to find

c c
m,n such that am + bn = d; then one solution is x1 =

\342\200\224m>y1=\342\200\224n.
d d

\342\200\242The general solution is x = x1H , y
= y1 for k e Z.

\342\200\242Sometimes there are constraints on the solutionso that only some values of k are allowed.

1-

1u

+G
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Mixed examination practice 4

(a) Usethe Euclidean algorithm to show that 27 and 59are
relatively prime.

(b) Find integers m and n such that 59m + 27n = 1.

(c) Find thegeneralsolution of the Diophantine

equation 59.x + 27y
= 20. [13 marks]

Use the Euclidean
Algorithm

to find the greatest common divisor of 7854and
3315.Hencestate the number of solutions to the diophantine equation
7854.x+ 3315y

= 41 and justify your answer. [7marks]
(\302\251IB Organization 2008)

(a) Find gcd(45,lll).

(b) Henceexplainwhy
the equation 45.x +11

\\y \342\200\22417has no integer solutions.

(c) Find the generalsolution of the equation

45.x +111 y \342\200\22415 with x, y e Z. [13 marks]

(a) Forwhich values of X does the equation Xx+
3y

= 5 have integer solutions?

(b) Find thegeneralsolution for X = 4. [9 marks]

(a) Find a pairofintegersm, n such that 5m + 3n = 17

(b) Hencefind a general solution of the equation 5x+
3y

= 17

with x, y integers.

(c) Find the two solutions which minimise | x |+1 y \\.

Show that there are no positive integersp and q such

that 102p +
72<j

= 1800.

[13 marks]

[11 marks]

rsM
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Modular

arithmetic

Can
you

find the last digit of 333333without evaluating the
number?A little thought leads us to realise that this is really
a question about divisibilityand remainders:What is the

remainder when 333333 is divided
by

10? In this section we will

investigate rules for working with remainders that enable us to
answerquestionslikethis one.

In this chapter you
will learn:

\342\200\242rules for working with

remainders, called
modular arithmetic

\342\200\242how to solve equations

involving remainders,
called linearcongruences

\342\200\242how to solve simultaneous

congruences

\342\200\242a shortcut for calculating

powers in modular

arithmetic.

+G

Introduction: working
with remainders

Lookat the clock: what time will it show after 12hours?What

about after 7 hours? After 19 hours?

After how many hours will the clock show5 o'clock?Thereare
infinitely many answers: 2, 14, 26,... We could saythat, as far as

the clock is concerned, all these numbersarethe same.

When you divide 38 by 12theremainderis2.What other

numbers give remainder 2 when divided
by

12? Again, there

are infinitely many answers:2, 14,26,50,...As far as division

by 12 is concerned,all thesenumbersarethe same. We say that

they are congruent modulo12.

Ifa number gives remainder 2 when divided by 12,what

remainder does twice that number give? Trying someexamples
suggests

that the remainder is always 4. Similarly,threetimes
the number gives remainder 6. In the next sectionwe will

prove that similar rules hold in general,but first let us look at

a few more resultsconcerningdivision by 12. We will need the

following result:

If you are studying Further
VSB? Maths, you will also meet

congruence as an example
of equivalence classes in the Sets,
Relations and Groupsoption.

>

KEY POINT 5.1

If a number n gives remainder r when divided by d then

n-kd + r for some number k.
This is just the

<^1 division algorithm we <^]
met in Section 2A.

rsM
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orked example 5.1

(a) If x givesremainder6 and 7 gives the remainder 3 when divided
by 12, find the remainders

when the following are divided
by

12.

(i) x + y (ii) x -
y (iii) xy

x
(b) Find an exampleto show that \342\200\224does not give remainder 2.

y

Write the numbers in the form from Key#

point 5.1 and then do the calculations

Write the resulting expression in the form#

12q + r and identify the remainder

We want the remainder to be smaller\342\200\242

than 12

The result is not always a whole number
\342\200\242

and even when it is, we can find several
different remainders

(a) Write x = /\\2k + 6,y = 12m + 3

(j)
x + y = (12k+ 6) + (12m + 3)

= 12(/c+ m) + 9

Hence x + y gives remainder 9.

(ii) x-y = (12/c+ 6)-(12m + 3)

= 12(k-m) + 3

Hencex \342\200\224
y gives remainder 3.

(iii) xy
=

(l2k + 6)(l2m + 3)
= 144km + 36k + 72m +15
= 12(12km + 3k + 6m) + 13

= 12(12km+ 3k + 6m +1) + 6
Hencexy gives remainder 6

(b) If x = 436 and y = 27, then
- = 16

which gives remainder 6.

+a
The above examplesuggeststhat we can add, subtract and

multiply remainders, but weneedtobecareful when dividing

them. In the next sectionwe will prove these assertions in

general, and investigate under what circumstances we can

perform division with remainders.

Exercise 5A
In questions 1 to 4 try to produce proofssimilarto thosein

Worked example 5.1.

1. (a) (i) If x givesremainder5 when divided by 12, what

remainder does 2x give?

(ii) Ifx
gives

remainder 2 when divided by 12, what
remainder does3x

give?

(b) (i) If x gives remainder 5 when divided
by 13, what

reminder does 4x give?

(ii) Ifx
gives

remainder 7 when divided by 13, what
remainder does4x

give?

rsM
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(c) (i) If y gives remainder 4 when divided
by 12, what

remainder does y3 give?

(ii) if y gives remainder 2 when divided
by 12, what

remainder does yA give?

2. (a) If a number givesremainder1when divided by 9, what

remainder does it
give

when divided by 3?

(b) If a number givesremainder3 when divided by 15,

what remainder does it
give

when divided by 5?

(c) If a number givesremainder4 when divided by 12,

what remainder does it
give

when divided by 3?

(d) If a number givesremainder4 when divided by 12,

what remainder does it
give

when divided by 4?

3. (a) If a number givesremainder1when divided by 3, what

remainders can it give when divided by 9?

(b) If a number givesremainder3 when divided by 5, what

remainders can it give when divided by 15?

4. (a) If a givesremainder4 when divided by 15 and b gives
remainder 5 when divided

by 15, what remainder does

a + b give?

(b) If m gives remainder 4 when divided by 13and n gives
remainder8 when divided by 13, what remainder does
mn give?

+a

(a) If x gives remainder 2 when divided
by

3 and y gives
remainder 1 when divided

by 3, what can you say
about x + y\\

(b) Describe all numbers which
give

remainder 1 when

divided by both 2 and 3. [4marks]

Rules of modular arithmetic
We start by introducing some new notation and terminology
for modular arithmetic.

We say that a is congruentto b modulo m if m \\ (a
- b).

This is written as a = b (modm). The definition has several

implications.

KEY POINT 5.2

If a = b (modm) then:

\342\200\242a and b give the same remainder when divided

\342\200\242we can write a \342\200\224km + b

by m

It*'
5 Modular arithmetic
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The first fact is usually used to checkwhether two numbers

are congruent modulo m, and the secondfact is often used in

proofs. Note that if a < b, then k needs to be negative,but this is
not aproblem.

orkedexample5.2

Show that if a = b(mod m) and c =d(modm) then a+c=b+ rf(mod m).

We need to write equations connecting*
a and b, and c and d. Use the second

point above

We have written a + c in the form \342\200\242

Nm + (b + d), so use the second point

above again

Write a = km + b, c = \\m + t

Then

a + c =
(km

+ b) +
(\\m

+ d)
= (k + l)m + (b + d)

Hence

a +c= b + d(mod m)

Similar proofs can be producedfor other rules of modular

arithmetic, summarised here.

+ )

1-

w
h

KEY POINT 5.3

+G

If a = b(modm) and c = d(mod m) then:

\342\200\242ka = kb(mod m) for all k e Z

\342\200\242a + c = b + d(modm)

\342\200\242a \342\200\224c = b \342\200\224
d(modm)

\342\200\242ac = bd(mod m)

\342\200\242a\" = b\"(modm) for all n e N.

With practice, doing modular arithmetic is just as quickas
doingnormalarithmetic, and in some sense even easier,
becausewe are

working
with smaller numbers. For example, if

x = 5(mod6)then 3x = 15 = 3(mod6) so (3.x) =9 =3(mod6).
Incalculations with multiple steps like this, we should

always

'reduce' to the smallest possible remainder after each step, so we

are never calculatingwith numbers larger than m.

It is sometimes convenientto use
negative remainders,

if this produces smaller numbers. For example:
98=

-2(mod lOO),
so 982 = (-if

= 4(mod100).

i U
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orked example 5.3

Find the remainder when 230 is divided by 13.

Start by evaluating small powers,
\342\200\242

and then look at the smallest possible
remainder

Squareboth sides*

To get power 30, raise to the power 5 \342\200\242

23=3(mod13)

26=64 = 12 = -1(mod13)

(26)5= (-1)5= -1= 12(mod13)

.\". 2?\302\260gives remainder 12.

+G

If you look at remainders when a number is raised to a power you

will find that they eventually start to repeat.Forexample:
41 = 4 (mod 10)

42= 6(modl0)

43 = 4(modl0)

44 = 6(modl0)

So all even powersof four givea remainderofsix when divided by
ten and all odd powersoffour give a remainder of four. If wewere
askedto find the last digit of 4312(which is equivalentto finding

the

remainder when dividing by ten) we couldthen immediately write

down the answer: six.

Exercise 5B

1. Find the following remainders:

(a) (i) 513(mod7) (ii) 419(mod7)
(b) (i) 615(modl2) (ii) 522(mod25)

(c) (i) 35131(modll) (ii) 29223(modll)

2. Find the following remainders:

(a) (i) 316+ 7(mod5)
(b) (i) 47-22(mod7)

(c) (i) 532+323(mod6)

(d) (i) 6x518(mod7)

Findthelast
digit

of 22223333.

(ii) 212+3(mod7)

(ii) 66-37(mod5)

(ii) 753-653(mod4)
(ii) 8x321(mod5)

[4 marks]

Find the remainder when 5544 + 4455 is divided by 7. [7 marks]

it*'
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Given that x is a whole number suchthat 2X has

last digit 4, find the last digit of 23x +1. [4 marks]

3 Given that (a + b)5 = 2 (mod 5) show that

{a + b) = 2(mod5). [4 marks] 1-

+G

Division and linear congruences
So far we have used addition, subtraction, multiplication and

powers in congruences. To be ableto solve equations we also need

to be ableto divide. However, we have already seen examples
where

dividing
both sides by the same number doesnot work.For

example,15= 3(modl2) but 5 ^ l(mod 12).In this section we will

see that there are somesituations where the division is possible.

Suppose that we want to divide both sides of a = b(modm)
by

d. To start with, both sides have to be divisible by d, as we
can

only
work with whole numbers. For example, starting from

48= 3(modl5)we cannot divide both sides by 2. However,
3= 18(modl5),sowe can replace 3 by 18 on the righthand

side to get 48 = 18(modl5). This can be divided by 2 to give
24 = 9(modl5), which is correct.

The above calculation illustrates an important difference
betweencongruencesand equations.

KEY POINT 5.4

If a = b(modm) then a =
b\302\261m(mod m)

In other words, we can add or subtract a multiple of m to

just one sideofthecongruence.

We can use this to make both sides divisible by d if they are not

already.It turns out that we can divide by any number which is
coprimewith m.

KEY POINT 5.5

Division rule 1

If a = b(modm),d divides both a and b and gcd(d,m) = 1,

then \342\200\224=
\342\200\224(modm).

d d

This rule says that, for example:

if 5x = 15(mod24) then x =3(mod24)as 5 is coprime with 24.

When d and m have some common factors we have to

changethe modulus when dividing. For example, we saw that

t*J
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15 = 3(modl2) but 5 ^ l(mod12),sowe cannot just divide both

sides by 3. However,5= l(mod4),sothe division seems to work

if m is alsodivided
by

3.

KEY POINT 5.6

Division rule 2

If a =
b(modm) and d divides a, b and m, then:

i a b, .m.
\342\200\224= \342\200\224

(mod\342\200\224)
' d d d

I
Division rule 3

I If a = b(mod m) and d divides both a and b, then:
I

a _b

d d
mod

m

gcd(d,m)

For example,if 6x= 6(modl5) we can divide both sides by 6.
But

gcd(6,15)
= 3, so we also have to divide the modulus by 3.

Hencex =l(mod5).
We can see why this works if we rewritethecongruenceas

equations:

If 6x = 6(modl5) then 6x = 15k+6.
At this stage we can only divide both sides

by
3:

2x = 5k + 2

As 2x and 2 areboth even k must also be even, so write
k-2n to get:
2x= 10n + 2

Now we can divide
by

2:

x - 5n +1

and hencex =
l(mod 5).

We can now solve linear congruences;that is find the values of
x for which ax = b(modm). The method is similarto

solving

linear equations, although some of the rules aredifferent.

KEY POINT 5.7

If ax = b(modm) then:

\342\200\242we can divide both sides by d ifwe alsodivide m by

gcd(m,d)

\342\200\242we can add a multiple of m to only one side.

^ Q,vv, \342\200\242V^+ o
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orked example 5.4

Find the valuesofx such that:

(a) 2x = 7(mod5)

(c) llx = 5(mod8)
(b) 6x + 5 = 8(mod9)

(d) 25x= 10(mod30)

We need to divide both sides by 2, but 7 is not*

divisible by 2. We can add 5 to the right hand side

gcd(2,5)
= 1, so we can now divide by 2 \342\200\242

It is customary to reduce to the smallest positive*
remainder

This means that x can be any number which gives
remainder1 when divided by 5, i.e. x = l, 6,1 1,...

or-4,-9,...

Start by isolating x on one side*

We need to divide by 6, so add 9 to the right hand \342\200\242

side so it is divisible by 6

Divide both sides by 6 gcd(6,9) = 3, so divide the*

modulus by 3

We could keep addingto the RHS until it is divisible*

by 1 1. Alternatively, as 8x is always a multiple of 8,

we can subtract 8x from the left

We don't have to divide by 25 in one go. Both sides*

are divisible by 5, and we must remember to divide

the modulus by 5

We can now divide by 5 again \342\200\242

(a) 2x = 7(mod 5)
<=> 2x = 12 (mod 5)

^> x = 6 (mod5)

<^ x = \\ (mod5)

(b) 6x + 5 = &(mod9)
<^> 6x = Z)(mod9)

<^=> 6x = \\2(mod3)

<^ x =
2(modZ))

(c) \\\\x = b{mod&)

<^ Z>x = 5(mod&)

<=> 3x = 13 = 21 (mod &)

^> x = 7(mod&)

(d) 25x = 10(mod30)
5x= 2(mod6)

5x = & = ]4 = 20 (mode)
x = 4(mod6)

In all of these examples there are
infinitely many numbers x

which satisfy the congruence.However,they
all give the same

remainder when divided
by

the final modulus. In the first

example the solutionis unique modulo 5, and in the second

exampleit is uniquemodulo3.Note that in the second example,
the solutionis not unique modulo 9 (which was the original
modulus):x could

give
remainder 1, 4 or 7 when divided

by
9.

Linear congruences do not always have a solution as shown in

the next example.

fsM
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orked example 5.5

Solve3x=
5(mod 12).

In order to divide both sides by 3 we needto*
keepadding 12 to the right hand side until it is

divisible by 3

It seems we can never make it divisible by 3. This \342\200\242

is because we are adding 12, which is a multiple

of 3, to 5, which is not

3x = 5 =17=29= 41 =
...(mod12)

5 + 12/ccan never be a multiple of 3

because 5 is not a
multiple

of 3.

So there are no solutions.

Exercise 5C

Solve the
following

linear congruences:

(a) (i) 3x = 7(mod11) (ii) 4x = 9(mod 15)

(b) (i) 15x= 7(mod11) (ii) 1 lx = 7(mod 9)

(c) (i) 5x=30(modl5) (ii) 3x = 18(mod9)

(d) (i) 12x + 2 = 4x+7(mod9) (ii) lbc-2 = 3x + 5(mod9)

(e) (i) 2hc=l8(mod9) (ii) 15x = 60(mod24)

Solve the linear congruence 5x=
7(mod 13). [4 marks]

Solve the linear congruence 3x=12(mod21)giving your

answer in the form x = a(modm). [4marks]

+G

Q (a) Explain why the linear congruence 6x = 4(mod9) has no

solutions.

(b) Solve 6x = 3(mod9).

(c) List all the solutions of the equation in (b) which
satisfy

| x | < 10. [8 marks]

(a) Solvethelinear
congruence

6x = 3(modl5), giving your
answers in the form x =a(modl5).

(b) How many solutions modulo 63 does the linearcongruence
2be = 147(mod63) have? Justify your answer. [7 marks]

Q Given that 3x + y = 21 (mod 5) and x \342\200\224
y

= 7(mod5) find the

smallest positivevalue of a such that x = a(mod5). [8marks]

9 Chinese remainder theorem
Consider the following problem: find all numbers which

give

remainder 2 when divided by 3 and remainder3 when divided

by 5. In the language of congruencesfrom the previous section,

we are trying to solve simultaneouscongruences:

it*'
^ Q, VVj
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The Chinese remainder *jt
theorem was first

dpra^

written down by the

Chinese mathematician Sun
Tzu in the 3rd century CE and
republishedby Qin Jiushao in

1247. Its first applications

were in solving Diophantine

equations, but it has also

found uses in public key

cryptography in the

20th century

orked example 5.6

fx = 2(mod3)

|x = 3(mod5)

We can list solutions for eachcongruenceseparately
and see

which ones appear in both lists.Tokeepthings simple, let us

just list the positivesolutions.

x =
2(mod3): x = 2,5,8,11,14,17,20,23,...

x = 3(mod5):x = 3,8,13,18,23,28,...

So far we have found two solutions:8 and 23.We can see that

to get any number in the first list we need to add a multiple
of 3 and for any number in the second list a multipleof 5.
Henceto

get
another number which is in both lists weneedto

adda multiple of 15. This means that every solution is of the
form 8+15/c,in other words x = 8(modl5). Although there
are

infinitely many numbers that satisfy this congruence, the
solutionis unique modulo 15.

This is an example of the followinggeneralresult:
KEY POINT 5.8

Chinese remainder theorem

If ml and m2 are coprime then the simultaneous

congruences
x =

a(modm1),
x = b(modm2)

have a unique solution(modm1m2).

The result generalises to any number of congruences,as longas
the moduli are pairwise coprime (so any two are

relatively prime)

Given the system of linear congruences:
x =2(mod5)
x =

3(mod 7)

x = 5(mod 13)

(a)Find one number x which satisfies all three congruences.

(b) Hence write down the solution of the
system

in the form x = a(modm).

We can solve the first two equations first. It is a \342\200\242

good idea to start with the two smallest moduli

We now makea list for the third equation*
and compare to all the numbers which are

17(mod 35)

This answer is unique modulo 35 x 13*

{a) x = 2(mod5): 2,7,12,17,...

x =
Z){mod7): 3,10,17,...

So x = 17(mod35)

x = 1(mod13):
5,13,31,44,57,70,33,96,109,122
x =

17(mod35): 17,52,37,122

(b) .\\x = 122 (mod 455)

fsM

W

60 Topic 10 -
Option: Discrete mathematics

^ q,vv, \342\200\242V^+ o



o ^ 11* >b. +4\302\253 +~

' V

As numbers get larger, finding a solution
by inspection becomes

more time-consuming. An alternative is to rewrite thecongruence
as a Diophantine equation. We will illustrate this method

by
an

example.

The method for

finding a solution

<^[ ofDiophantine equ- <^[
ations was given in

Section 4B.

orked example 5.7

Solve the simultaneouscongruencesx = 12 (mod 32), x = 21(mod31).

As 31 and 32 are relatively prime, the solution is*

unique modulo 31x32 = 992. We just need to

find one solution

Write each congruence as an equation for x*

This is a Diophantine equation, so we know how*

to find one solution

We can now find x from (*). Both equations for x-
should give us the same solution (we should check!)

This is the solution mod(992)

I3y Chinese remainder theorem, the
solution is

x = c(mod992)

\\Ne can write

x = 32a + 12
x=31b+ 21

W

Hence 32a + 12= 31b+ 21

<^=> 32a -311? = 9

god(32,31)= \\,and 1 = 32 - 31

So 9 = 32x9- 31 x 9

:.a = 9,b = 9

From (*), x = 300.

/. x = 300(mod992)

+G
Exercise 5D

1. Solve the following simultaneous congruences:

(a) (i) x = 3(mod5),x= 4(mod7)

(ii) x = 2(modll), x = 4(mod5)
(b) (i) X = 0(mod2),x = 2(mod5),x = 4(mod7)

(ii) x = 0(mod3), x = l(mod4), x = l(mod5)

2.
By

first solving an appropriate Diophantine equation, solve
the

following
simultaneous congruences:

(a) (i) x = 6(modl9), x =6(modll)
(ii) x = 6(modl3), x = 3(mod22)

(b) (i) x = 15(mod31),x = 2(mod30)

(ii) * = 4(modl7),;c = 9(mod24)

5 Modular arithmetic
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Solve this system of congruences:
(x=2(mod3)

[x = 5(mod7) [6 marks]

Solve this system of linear congruences:
x =

2(mod 3), x = 0(mod 5), x = 6(mod7) [8 marks]

(a) Find the smallest positivevalue of x such that

5x = l(mod7).

(b) Hencesolve the system of linear congruences

5x = l(mod7),x = 3(mod5) [7 marks]

Solve these simultaneous linear congruences:
3.x=2

(mod 5)

5x = 2(mod 3) [8 marks]

Solvethe
system

of linear congruences:

x = 3(mod 17), x =21(mod31). [10marks]

1-

0 (a) Prove that the system of linear congruences:

x = 2(mod6),x = 4(mod9) has no solutions.

(b) (i) Find thegeneralsolution of the Diophantine equation:
6m-9n = 3.

(ii) Hencesolve the system of congruences:

x = 2(mod6), x =5(mod9). [10marks]

+G

Fermat's little theorem

We have alreadyansweredquestions such as: find the remainder

when 517 is divided by 7. We start by evaluatingsmallpowers
and see if we can spot a pattern:

52=25=4(mod7)
53=5x4= 6 =

-l(mod7)

We can get closeto the power17
by raising this to the power of 5:

515=(-l)5=-l(mod7)
515 x52 = -1x4 = -4 = 3(mod7)

Hence517 gives remainder 3 when divided by 7.

Our
strategy

in these problems is to keep evaluating powers
until wegetremainder1or-1and then 'jump to a multiple
close to the requiredpower.But how do we know that this will

ever happen?Forexample,lookingat powers of 3 modulo 12,
we find that:

31= 3(mod12),32 =
9(mod 12), 33 = 27 = 3(mod12),

34=3x3=
9(modl2)

^
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It seems that the remaindersalternatebetween3 and 9, so we

will never get remainder 1.In this case, it seems that all odd

powers give
remainder 3 and all even powers remainder 9.

In alltheexampleswe have seen so far the remainders of powers
follow a periodic pattern. When we are looking at remainders

modulo a prime, the following result tellsus how
many powers

we need to find before they start to repeat.
KEY POINT 5.9

I Fermat's little theorem

| lip is a prime and a is
any integer then ap = a(modp).

This is equivalentto saying
that p\\(ap

- a).

We can extract evenmoreinformation when a is not a multiple
ofp: as a andp are

relatively prime we can divide both sides of
the congruenceby

a to get the following special caseof Fermats
littletheorem.
KEY POINT 5.10

If p is a prime and a is nota multiple of p then

ap-l=\\{modp).

The proof of Fermat's

*SEG? little theorem uses ideas
from Group Theory, a

branch of Discrete Mathematics
studied in Option 8, Sets,
Relations and Groups.

We now have a good strategy for finding remainders.

orked example5.8

Find the remainder when 2828 is divided by 13.

Fermat's little theorem is useful because we can*
jump to quite a high power

We can squarethis to get power 24*

We now just need to multiply by 284#

28 = 2(mod13)

Fermat'slittle theorem

=>28>12=1(mod13)

=>2<324=12=1(mod13)

=> 2&2&= 2d4 = 24 = 16 = 3(mod13)

.\\ 2&z&Q\\vee remainder 3 when divided

by 13.

When we are looking at divisibility by a compositenumber,

Fermats little theorem may need to be usedseveraltimesin the

same question.

orked example 5.9

Prove that for all integers n,n7 - n is divisible by 42.

We first factorise 42 to see which primes we need \342\200\242

to look at

42 = 2x3x7

1-

^SV^ + c,
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Because there is n7 in the question, we can use*
Fermat'slittle theorem for divisibility by 7

Now lookat divisibility by 3: Fermat's little*

theorem can only be used to get to n3, but we

can then apply other rulesof congruences

Similar strategy works for divisibility by 2 \342\200\242

We have proved divisibility by 2, 3 and 7*

Divisibility by 7:

I3y Format's little theorem,
n7 =

n(mod7)

5o7\\(n7 -n).

Divisibility by 3:

I3y Fermat's little theorem,
ri5 =

n(modZ))

=^> n6 = n2 (mod3) (square both

sides)
^ n7 = ri5 (modi) (multiply by n )
=^> n7 =

n(mod3) (from the first line)

So 31 (n7
- m).

Divisibility by 2:

I3y Fermat's little theorem,
n2 =

n(mod2)

=>n6 =n5 (mod2) (cube both sides)

=^> n7 = n4 (mod2) (multiply by \302\253
)

But n4 =
(n2 )2 = n2 = n (mod 2)

So 2\\(n7 -n).

Therefore n7 - m is divisible by 2, 3 and 7

and hence by 42.

I L* \\

+a

It is worth noting alternative approaches here. First, the

divisibility by 2 could have been proved by simply noting that

an even number to
any power is even and an odd number to

any power is odd; hence n7 and n are either both even or both
odd,sotheir difference is even. Secondly, we could have proved

divisibility by 2 and 3 together by factorising:

n7 \342\200\224n\342\200\224
n(n6 -l)

= n(n3-l)(n3+l)
= n(n -

l)(n2
+n + l)(n + \\)(n2

\342\200\224n +1)

n,n-l and n + 1arethreeconsecutive integers, so at least one

of them is evenand at least one of them is divisible by 3.Hence
their product is divisible by 6.

Exercise 5E

1. Find the following remainders:

(a) (i) 342(mod 41)
(b) (i) 411 (mod 11)

(c) (i) 724(modl3)

(d) (i) 525(mod3)

(ii) 539 (mod 37)

(ii) 517(modl7)

(ii) 518(mod7)
(ii) 1231(modll)

Find the remainder when 3532 is divided by 11. [5marks]
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(a) Prove that x25 = x (mod 13).

(b) Hencesolvex25 = 5 (mod 13).

(c) Explain why the linearcongruencex12 = 5(modl3) has no

solution. [8 marks]

Q Leta and b be two whole numbers such that a + b is divisible by
17. Showthat a17 + b17 is also divisible by 17. [3marks]

Given that p is a prime number show that p \\ {abp
-

apb) for all

positiveintegersa, b. [6marks]

Letp be a prime number greater than 2 and letx and y be such

that p | (x*+ j^). Show that p2\\xp+yK [7 marks]

Summary

\342\200\242a = b(modm) means that:

m\\(a-b)

a and b give the same remainder when divided by m

- we can write a-b + km.

\342\200\242We can add, subtract and multiply congruences, and raisebothsidesto the same power.

\342\200\242We can add or subtract a multipleof m from just onesideofa congruence.

\342\200\242There are special rules for division:

a b m- if a = b(modm) and d divides a, b and m, then \342\200\224=
\342\200\224(mod\342\200\224)

d d d

a _b
if a = b(modm) and d divides both a and b, then

~j

=
~j

f
- m

mod
gcd(d,m)

\342\200\242The Chinese remainder theorem says that if m1 and m2 are coprime then the systemof linear
congruencesx = a{modmx), x = b(modm2)has a unique solution(modmlm2). This solution can

be found either by inspectionor
by solving a Diophantine equation.

\342\200\242Fermat's little theorem says that ifp is a prime then for all a, ap = a(modp). A consequence is

that ifp is prime which doesnot divide a then ap~l = l(modp).

5 Modular arithmetic
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Mixed examination practice 5

UseFermats littletheoremto find the remainder when 14112is divided by 11.
[5marks]

Find the last digit of 432.

Solvethelinear
congruence

3x = 5(modl 1).

Find the last digit of 560 when written in base 13.

Show that 22225555 + 55552222 is divisible by 7.

(a) Find gcd(32,12).

(b) Solve the linear congruence 12.x= 36(mod32).

[3marks]

[6 marks]

[6 marks]

[6 marks]

[6 marks]

[4 marks]

Considerthe equation x12 + 1 = 7y, where x, y
e D+.

Using Fermat s little theorem, show that this equation has no solution. [9 marks]
(\302\251IB Organization 2007)

(a) Find the remainder when 45 is divided by 25.

(b) Hence show that 410w+2 =
16(mod25).

(c) Find the last two digits in the base 5 expansion of 442.

Solve the system of linear congruences x =2(modl3),x = 3(mod5).

Solve the simultaneous congruences:
x =0(mod2),x = 2(mod5), x = 14(modl7).

[7 marks]

[4 marks]

UseFermats little theorem to show that 7120-1 is divisible by 143.

(a) Show that 536 gives remainder 13when divided
by

17.

(b) Find the remainder when 536 is divided by 13.

(c) By solving simultaneouscongruences,find the remainder when 536 is

[7 marks]

[5marks]

divided by 221. [8 marks]

(a) Letp be a primeand
gcd(a,p)

= 1. Use Fermat s little theorem to
show that x = ap~2b(modp) is a solution of the linearcongruence
ax = b(modp).

(b) Hence solve the systemoflinearcongruences2x= 1 (mod
31J,

6x = 5(mod 11).
[7marks]

Find all the solutions of the linear congruence 120.x=110(mod65),giving

your answers in the form x = /c(mod65). [5marks]

(a) State Fermat s little theorem.

(b) Provethat, ifp >3isaprimethen
^Jcp

= 0(modp).

p-

i
k=\\

[4 marks]
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Graph theory

What do social networks, molecular structures, traffic flow and

the syntax of a language have in common? One answer is that

they can allbestudied
using graphs, mathematical structures

which are normally representedas a set ofpointsjoinedby

lines. Graphs seem an abstract mathematical conceptbut
they

have many applications in a wide
variety

of unexpected places.
In this chapter we will look at basic mathematical properties of

graphs,and in thenextwe will apply them to finding optimal
routes arounda network.

Introduction to graphs

In this sectionwe will introduce some typical problems that can
be solvedusinggraphs.You should attempt to find a solution,
but don'tbedisappointed if you can't; the problems are intended
to illustratethesortofdifficulties that started the development
of graph theory. They

should help you understand the need for

the precise definitions and theorems that are introduced in this
chapterand for the algorithms we develop in the next.

Thetablebelowshows the cost of direct flights between
ten cities.

In this chapter you
will learn:

\342\200\242that many different

types of real-life

problems can be
solvedusing graphs

\342\200\242about main features of

a graph and different

ways of representinga
graph

\342\200\242how to recognise some

special types of graphs
\342\200\242how to prove some

important theorems
about the numberof
verticesand edgesin a

graph

\342\200\242about different ways

of moving around a

graph.

+G

cost($)

Frankfurt 52

Johannesburg

New York

Moscow

Sydney

65

Beijing Cairo \\Dubai

412

450

526

486

350
225

213

320

186

250

212

386

96

412

320

250

315

234

312
524

Frankfurt

52

Johannesburg

450

186

250

36

312

387

526

250

315

325

216

65

New York Moscow Sydney

212

234
36

325

215

428

486

386

312

215

243

350

312

387

428

225

524

216

243

1. Can you find the cheapest combinationof
flights

to get

from Athens to Sydney?

2. Can
you

find the cheapest combination of flights to visit

each city at least once and return to the
starting city?

To answer the first question, it is tempting to try one of two

approaches.We can either try the route with fewest legs,which
in this caseis

Athens-Dubai-Sydney
or we can try the one in

whichthe initial
flight

is the least expensive, which would be

^^VNc*.
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TTzere ts an efficient
method for solving

this problem, called

Dijkstras Algorithm.
We will meet it in

section 7C.

e>

This is called the

Travelling Salesman

]^> problemand we
w///]^>

investigate its solution

in Section 7E.

Would you say that if we

program a computer to try

all possible routes, we can \\

be certain that we have
found the best possible solution?

Is this the same as proving it

mathematically?

This problem was first
\342\231\246Jf

studied by Leonhard Euler 4fjjfk
in 1 836, and is usually

regarded as the first published

result of graph theory.

Athens-Frankfurt-New York-Sydney.However, more testing

reveals that neither of theseis the cheapest.The best possible

route is in fact Athens-London-Johannesburg-Sydney. It isnot
clearthat this is the cheapest without checking lotsofpossibilities.
You can imagine that if we had 100citiesinstead of 10, the

problem would be impossibleto solve in a reasonable time.

The second problemisevenmoredifficult. It is not even obvious
that the bestrouteshouldvisit each city exactly once, as sometimes
the directroutebetweenthe two cities is not the cheapest one.
Even checking all the routes in which each city appearsjust once
doesnot seem to be an easy task. It turns out that usually the only

way to solvethis type of problemisto checkallpossibleroutes,

and generally this is not feasible.However,therearesomeclever

ways to estimate the cost of the cheapestroute.

The information from the table can be representedas a

diagramin which points (representing cities) are joined by
lines(representingdirectroutes). Such a diagram is called a

graph. Where these
types

of problems are used in practical

applications, the graphscanconsistofhundreds of points or

lines. An example similar to our problemisa satellite
navigation

system, which tries to find the shortest routebetweentwo places

and has a choice of many different roads and junctions. It is

impossible for a human to solve such a problem in a reasonable
time,sowe need to program a computer to do this.

Using
a computer introduces a new set of problems.We need

to program the computer to solveallproblemsof this type,

not just one particular one. This means that we need to have

a method, calledan algorithm,which always finds the best

possible solution. Suchan algorithmhas to have a well-defined

sequence of steps,and cannottakeshortcuts based on guessing'

or experience'. It must alsobe efficient so that it can perform
the task in a reasonabletime.

Checking
all possible routes is

not practical, and the timeit takes increases rapidly with the

size of the graph.A typical computer can perform around 3
billionoperationspersecond;checking

all possible routes for

our second problemwould take arounda millisecond,but if

we increase the number of citiesto 15it would take around 5

minutes and with 20 citiesthis goesup to 500 years
- not very

practicalif you
are waiting at the travel agent!

Here is a different problem: Is it possible to draw this shape
without lifting your pen off the paper and without going over

any lines more than once?

fsM
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After trying for a while you may decidethat it is impossible. This

is equivalent to saying, for example, that the shape cannot be made
out ofa singlepieceofwire. Can you explain why? What feature of
the shapewould need to change for it to become possible?

Later we will prove that the key feature for this problem is the
numberoflinescomingout of each point. This is one of the
importantfeatures of graphs that we will study in the rest of
this chapter.

sUfl Definitions
Inorder to solve problems with graphs it is usefulto introduce
somenew terminology. In this section we will define various
conceptsassociatedwith graphs.

A graph consists of vertices connected
by edges. Two vertices

are called adjacent if they arejoinedby
an edge. Two edges are

called adjacentif they
have a common vertex. When we draw

a graph,thepositionofthe vertices and the shape of the edges
arenot relevant; the only thing that matters is whichverticesare
adjacent. So the two diagrams below represent the samegraph.
The edges may intersect at points other than vertices,soit is
importantto labelthe vertices clearly.

The vertices of the graph are
usually

labelled by capital letters.

So the graphsabovehave vertices A, B, C and D and edgesAB,

AC, BC and BD.

Sometimes we need to showa situation where we can only
move in one directionbetweenvertices,for example when

modelling a road network with one-way roads. In such cases we
can put arrows on the edges to indicate the alloweddirection.
The resulting graph is called a directed graph, ordigraph.In
Graph 1, it is possible to get from D to A but not from A to D,

while both directions between A and B are allowed.

Graph 1

This problem is

related to Eulerian

]^> graphs,which we will ]^>
meet in Section 6F of
this chapter.

\342\231\246Jf Graph theory is a

4fjjfk relatively new branch of

mathematics, with its

beginnings in the 1 8th century
and many important developments

in the early 20th century. Because
many of its findings were
motivated by applications it has

had contributions from many
different communities:
mathematicians, computer
scientists, chemists and even

linguists. For these reasonssome
of the terminology is not yet firmly

standardised, so you may find

slightly different definitions in

other books. For example, vertices
and edges are alsocalled nodes

and arcs. The terminology we use
here is what will be used in your

IB examination.

^ Q\342\200\236
t**W
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Graph 2

v

You should
not

assume thai a graph

is simple
unless this is

explicitly
stated.

-^^<+/-

' V

In a simple graph no vertex is joinedto itself(no loops) and

there are no multiple edgesbetweenvertices.SoGraph 2 shown

alongside, is not simple. Sometheoremsof
graph theory only

apply to simple graphs, so it is importantto notethis when

learning them. A graph in which there aresomemultiple edges

is sometimes called a multigraph.

When a graph has many vertices and edgesit canbe
complicated to draw. In such cases it is more convenient
to representit by

an adjacency table. This table shows the
numberofedgesjoiningeach pair of vertices. For example, the

adjacencytable for Graph 1 is:

^

A

B

C

D

A

0

1

0
1

B
1
0
0
1

C

0

1

0

0

D

0

0
0
0

and the table for Graph 2 is:

A

2

1

B

2

0

0

c
1
0
0

KEY POINT 6.1

+G

X?

\342\200\242For a simple graph, all entries on theleadingdiagonal

(top left to bottom right) are zeros,and allotherentries
are either 0 or 1.

\342\200\242The adjacency table of an undirected graph is

symmetricalabout theleadingdiagonal.
I

The number of edges coming out of a vertex is calledthe degree

of that vertex. For example, in Graph 2:

deg(A)
= 5, deg(B)

= 2, deg(C) = 1.

Notethat when calculating the degree, we count the edge
joiningA to A twice, as each edge has to have two ends.

However, in the adjacency table thenumberin the (A, A) cell

is 1, becausethereis
only

one edge joining A to itself. The list
of degreesofalltheverticesofthe

graph
is called its degree

sequence. It is usuallygivenin descendingorder;for example,

Graph 2 has degree sequence 5,2, 1.

KEY POINT 6.2

The degree of a vertexis equalto thesumofthenumbers
in the row or column of the adjacencytable corresponding
to that vertex. If there is an edge connectinga vertexto
itselfthat edge needs to be added twice.

vs.
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In the next section we will prove severaltheoremsabout the

number of edges and vertices of different types of graphs.

They will show that there are restrictionson what the degree

sequence of a graph can be.Herewe show just one interesting
result about the degreesequenceofa simple graph.

orked example 6.1

<&

You may want to

review the pigeonhole
principlefrom Section
IB

before reading

the next Worked

example.

<&

Showthat in a simple graph there are always two verticeswith the same degree.

This sounds like the type of problem we*

solved using the pigeonhole principle.
The vertices can be 'pigeons', and

the possible values of the degree

'pigeonholes'

There seem to be n pigeonholes! But can*

they all appear in the same graph?

Suppose the graph has n vertices. As the

graph is simple, the smallest
possible degree

of a vertex is 0 and the largest one is n -1.

If there is a vertex with degree 0, then no

other vertex isconnectedto it, so the

largest possible degree is n - 2. So there

are in fact only n -1 possiblevalues for the

degrees: either 0 to n - 2, or 1 to n - 1.

Hence,by the pigeonhole principle, two of the
verticesmust have the same degree.

+G

\342\231\246w This result can be expressed in various different ways in different contexts. For example, in

4fjfi
each group of people there are two who have the same number of friends in the group; or

in a football league, at each point in the season there are two teams that have played the

same number of games.

Oneofthemainapplicationsof
graphs

is modelling situations

where we need to move betweenvertices.It istherefore
important to know whether it is possible to get from onevertex
to another.A graph is called connected if every two verticesare
connected

(directly
or indirectly); in other words, there is a

path between
every

two vertices. This means that the graph
cannot besplitinto two parts. Most of the results in this course
dealwith connected graphs.

Connected

Not connected

We will look at

various types of
paths in moredetail
in Section 6F of this

]^> chapter. For the]^>
moment we just use

the term to mean a
route between two

vertices.

There are some special types of graphswhich
you

need to know.

^^%\302\253.
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\342\226\240^*

You may be asked

to give explanation8
and prooMor

mod

0Hheresults
m this

chapter.

A complete graph is a graphwhere every pair of vertices

are joined by an edge.A symbol for a complete graph with n
vertices is K\342\200\236.

KEY POINT 6.3

fn\\
The number of edgesin K\342\200\236is

vh

This is because there is an edgecorrespondingto every pair of

fn\\

v2y
vertices, and selectingtwo vertices from n can be done in

ways.

A bipartite graph is a graph whose verticescanbesplitinto two

groups, X and Y, such that edges only join vertices in X to those
in Y, and there are no edges joiningverticesin the same group.
If every vertex in X is joinedto

every
vertex in Y the graph is

calleda completebipartitegraph and denoted Kr s,
where r and s arethenumberofverticesin groups X and Y,

respectively.

orked example 6.2

Show that the number of edges in Kr s is rs.

How many edges start from each vertex in X?*

How many vertices are there in X?*

There are e edges from each vertex in X.

There are r vertices in X.

So there are re edqee in the graph.

J.

1-

1h
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A tree is a connected graph in which therearenoclosedpaths

(cycles), i.e. it is not possible to find a sequenceof distinctedges
which returns to the starting vertex.

Tree Not a tree

KEY POINT 6.4

A tree with n vertices has n - 1edges.

+a

Note that this is the smallest possible number of edgesneeded
tomake a graph with n vertices connected, so if

any
one edge of

a tree is removedthe
graph

is no longer connected.

You need to be ableto prove the above result about the number

of edges of a tree. Theproofuses
strong

induction and is given
in the next example.Proof

by
induction is common in graph

theory becausewe can think of'building up' any graph by

adding verticesand edgesoneat a time.

orked example 6.3

Use strong inductionto prove that a tree with n vertices has n - 1edges.

Prove the base case. We will check later*

that n = 1 is the only base case needed
When n = 1:

The tree with one vertex has no edqee, eo
the statementistrue for n = 1.

Assume the statement is true for all n< k.

How let n = k and look at a tree with k

vertices.

^SV^ + c,
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continued...

It is tempting to try and take out one vertex*
and one edge to get a tree with

k - 1 verticesand k - 2 edges. However,
this vertex would need to be from the 'end'

of the tree, and it is not easy to identify

such a vertex. But since we can use strong

induction, we can take out any edge to

split the tree into two smaller trees (we
need to explain why this is the case)

We have not removed any vertices*

We can apply the inductive hypothesis*

We should always write a conclusion.\342\200\242

Note that we only need n = 1 as the base

case, as when n = 2 we can split the

graph into two graphs with one vertex
each

Take out any edge.

This splits the
graph

into two separate
trees-. If the remaining graph was still

connected there would be another path
betweenthe

endpoints
of the removed edge;

but putting the removed edge back would

then form a cycle, which is impossible.

Let the numbers of verticesof the two new

trees be a and b.

Then a + b = k .

Both a and b are less than k, so the

inductive hypothesis applies:The two trees

have a -1 and b -1 edges.

Hence the number of edges of the original

tree was

(a-l) + (b-1) + 1 =
(fl + b)-1 = k-1

Sothestatementistrue for n = k.

The statement is true for n = ], and if it is

true for all n < k we can prove that it is
alsotrue for n = k. Hence the statement is
true for all n by strong Induction.

)

1-

1h

+G

We will prove this

]^>result in the
next\"^^>

section.

Another important type of graph is a planargraph.This is any

graph that can be drawn in theplanesothat the edges do not

cross. Not every graph is planar;forexampleit is impossible to

draw K3 3 without any edges crossing.

This type of path is

called a Hamiltonian

]^> cycle, and we w///]^>
study it in more detail

in Section 6G.

A planar graph may be drawn with edges crossing,or
given

by its adjacency table. To redraw the graphin its planar form,

one good strategy is to lookfora closedpath which includes

all vertices of the graph, draw this path first, and then fit other

edges around it. Note, however, that such a closed path does not

always exist.

fsM
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orked example 6.4

Graph G is givenby the following adjacency table.

A

o

1

1
1
1

B
1
0
1
1
1

c
1
1
0

1

1

D

1

1

1

0

0

E
1
1
1
0
0

Draw G in planar form.

First draw G with vertices in*

alphabetical order and find a closed

path which includes all the vertices

Redraw G so that this path forms a*

pentagon
Then fit in the other edges. Put as

many as you can inside the pentagon,

and then the others round the outside

Dm C

Hamiltonian cycle: A5DCEA

1-

^SV^ + c,
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Exercise 6B

1. For eachofthe graphs shown below state the number ofvertices
andthenumberofedges.

Gl G2 G3

1-

1h

G5 G6

+a
2. Foreach of the graphs above list the degreesof thevertices.

3.
Copy

and complete the table to classify the graphsabove.Use
ticks to mark correct options.

wrTTnTtfSfZril

Simple

Complete

Tree

Bipartite

G2 G3 G4 G5 G6

4. Represent each of the graphs above in an adjacencytable.

fsM
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5. Draw the graphs represented by the
following adjacency tables

(a) (i) A \\B \\C D

1

2

0

1

2

0

1
2

0
1
0
0

1
2
0
0

(ii) A \\B \\C D

D

0

0

2

1

0
1
1
0

2
1
0
2

1
0
2
1

(b) (i) A \302\243\\C \\D

0

1

1

0

1
0
1
1

1
1
0

0

0

1

0

0

(ii) A \\B \\C \\D

9 o

a
BB o

D 1

1

0

0

1

0

0

0

1

1
1
1
0

(c) (i) A \\B \\C \\D \\E

0

1

1

0

1

1
1
0
2
0

1
0
1
1
1

0

2

1

0

2

1

0

0

2

0

(ii) A \\B \\C \\D \\E

Bin

1>
9 o
E3 o
E 2

1

0

1

1

0

0

1
2
0
1

0
1
0

1

2

2

0

1

2

0

+G

6. Without drawing the graphs, write down the degreeof each
vertexforthe

graphs
with the following adjacency tables:

(a) (i) \342\226\240mraramn<\302\273>
A B C \\D

0

1

1

0

0

1

0

0

1
1

1
0
0
1
1

0

1

1

0

0

0

1

1
0
0

(b) (i) A \\B \\C \\D \\E

o

1

1

o

\\2

1

2

0

0

2

1
0
1
0
0

0

0

0

2

3

2

2

0

3

0

(ii)

D

\302\243\342\226\2400

1>

a
a

i
0

0

i

i

0

0

1

1
1
1
0

A \\B \\C D

2

1

1

3

1
1
2
0

1
2
0
0

3
0
0
0

lfsM
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7. Draw each graph in planarform:

(a) A Z^t (b)

8. Showthat each of the graphs is bipartite by listingthe two sets of

vertices:

A B tu\\ F
(a) (b)

C V

9. Drawan exampleofeachofthe following:

(a) A simple, connected graph with 6 vertices,eachofdegree2.
(b) A simple, non-connected graph with 6 vertices, each of

degree2.

(c) A simple, connected graph with 6 vertices, eachofdegree3.

(d) A multigraph with 6 vertices with degrees 2, 2,4,4,4,4.

(e) A simple, bipartite graph with 7 vertices and 11edges.

M (a) Draw the graph K5.

(b) Draw the
graph K2 3.

(c) Prove that the number of edgesin the graph Kn is

The graph Kn has 36 edges. Find the value of n.

f\342\200\236\\

K2J

[7 marks]

[3 marks]

(a) Write down the smallest and the largest possibledegreeof
avertexin a simple connected graph with n vertices.

(b) Showthat in a simple connected graph there must be two

vertices with the same degree.

(c) Draw an exampleofa connected
multigraph

with three

vertices with degrees 1, 2 and 3. [8marks]
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Some important theorems

In this sectionwe will prove some important properties of

graphs.You will be expected to learn these proofs for the exam,

so they are shown as Worked examples.

orked example 6.5

Prove that the sum of the degrees of all the verticesin a graph is equal to twice the number
ofedges.

The degree of a vertex is the number of edges'

coming out of it; so in determining the degree
of a vertexwe are actually counting edges

Every edge has two ends, so each edge

corresponds to two vertlcee.

Hence when adding up
the degrees of all

the vertlcee, each edge is counted twice.

This result is known as TheHandshakinglemma, because the

edges can be thought of as representinghandshakes and vertices

as people. It is used in proving many
other theorems, such as

the one in the nextexample.

orkedexample6.6

Prove that in any graph, the number of verticesof odddegreeiseven.

{Below are two proofs of this result; thefirst oneisshorter, but the second one may be
moreobvious.)

> What is the main function of proof: To establish the truth of the result, to be elegant,
y or to give better intuitive understanding of the result? Which of the two proofs do

you prefer?

What do we know about degrees of-
vertices?The Handshaking lemma tells us

that the sum of all degrees is even. So we
can try to write an expression for the sum of

all degrees

even + even = even \342\226\240

odd + odd = even but odd + odd + odd = odd

First Froof

Let a be the number of vertices of even

degree, and b the number of vertices with

odd degree.
The sum of all degrees is the sum of a

even numbers and b odd numbers:

^degrees = (a evens) + \\b odds)

even even

I3y the handsha king lemma, LHS is even.

The sum of even numbers is always even,

so the first bracketis even.

Hence the second bracket must be even.

I3ut the sum of odd numbers can only be

even If there is an even number of them.
Henceb is even, as required.

^^%0c.
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continued...

We can think about building up a graph
\342\200\242

from a single vertex by adding vertices and
edges, and think about how the degrees

change as we do this

Operation 1 only changes the degrees of*
the two vertices which are being connected.

We need to consider different cases,

depending on whetherthosedegreeswere

even or odd before the extra edge was
added

Operation2 doesnot change degrees of*

existing vertices. The newvertexhas no
edgesyet

Remember that we started with the number of*

vertices of odd degreeequal to zero

Second Froof

In a graph with a single vertex and no

edgee, the number of vertlcee of odd

degree is zero, which is even.

\\Ne can build up any graph by a sequence

of two types of
operation:

1. add an edge between two existing
vertices

2. add an extra vertex

With 1: The degrees of the two vertices

being connected are \\ncreaeed by 1, and

the rest remain unchanged.
If the two degrees were even, they are
now odd so the number of odd verticesis
increasedby 2.

If the two degrees wereodd, they are now

even so the number of odd vertices is

decreased by 2.

If one of the degrees was even and the

other one odd, the first one becomes
odd and the eecond becomee even. So
the number of odd degreee remains

unchanged.

With 2: The degree of the new vertex is

zero, which is even. The other degrees
don't change. So the number of vertices of
odd degreeremains unchanged.

Hence as we build up the graph, the

number of vertices of odd degree can
Increaseordecreaseby 2, or remain

unchanged. As it started as an even

number, it always remains even.

+ )

The rest of the results in this section concern planargraphs.
When a graph is drawn so that the edgesdonot intersect,the

plane is divided into a certain number of regions.Counting
the

outside' as one region, the graph shownoverleafdivides the

plane into 6 regions. In what follows,we denoteby/the number

of regions, v is the number of verticesand e isthenumberof
edgesofthe graph. So for the graph overleaf, v = 5, e - 9,f= 6.
Theresultin the next example is called Euler's relation.

fsM
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Euler's relation is
\342\200\242\342\200\236in the Formula

given
in me \342\200\242\"

booklet.

1-

+a

orked example 6.7

Prove that for a connected planar graph, v \342\200\224e + f
= 2.

(You can check that this result is not true if the graph is not connected.In the proof we will have

to make sure that we are always working with a connected graph.)

As this result is about the number of

edges and verticesof a graph, we

can try to apply a strategy from the

previousexample:build up the graph

by adding vertices and edges, and see

how the numbers e, v and f change

To keep the graph connected,
wheneverwe adda vertex we have to

join it to something

In a graph with a single vertex and no edges,

v=\\,e=0,f=\\,eo v-e + f = Z.
\\Ne can build up any connected

graph by a

sequence of operatlone of two types:

(i) add an edge betweentwo existing vertices

(ii) add a vertex and an edge joining it to one

of the existing vertices.

With (i), v remains unchanged, e increases by 1,

and flncreaeee by 1 because the new edge splits
one of the regions into two.

So now we have

v -(e +
\\)

+ (f +
\\)

= v - e + f

^ Q,VVj
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continued...

When we add a newvertexand an \342\200\242

edge, the new edge 'sticks out', so it

does not split any of the regions into

two

With (ii), v and elncreaee by 1 but f remains

unchanged, because none of the existing regions

are split into two.

So now we have

(v + /l)-(e + i) + f = v-e + f

In either case the value v \342\200\224e + f doee not

change, so it is always ec\\ual to 2.

Euler's relation was first discovered for polyhedra (three dimensionalshapeswith polygons \342\231\246Jf

for faces). In that case, v, e and f stand for the number of vertices, edges and faces.You can
4fJ\302\245i

imagine a polyhedron being turned into a planar graph by making a hole in one face and

stretching it out flat. The face with the hole becomes the 'outside' region.

Euler'sformula was originally used to classify platonic solids. It is now an important tool
in the study of solid objects with holes, in the branch of mathematics called topology.

+G

EXAM HINT

Both of these results are
given in the Formula

booklet. ^

Thereare two other important results for planar graphs,
involving only the number of vertices and the numberofedges.
The first one (proved in Worked example 6.8)appliesto any

simple, connected, planar graph. The second one (provedin

Worked example 6.9) applies only to certain planargraphs.

orked example6.8

(a) Show that for a simple, connected, planar graphwith three or more vertices, e < 3v - 6.

(b) Hence show that the complete graph K5 is not planar.

There is no connection between the number*
of verticesand edges of a graph in general,

except that e>n-l if the graph is connected.

So there is something special about planar
graphs.We know one equation that could be

relevant: the Euler'srelation

(a) Euler's relation:

v-e+f=2

fsM
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continued...

We need to eliminate f. Can we find a-

connection between the number of regions
and the number of vertices or edges?

Each region has at least three edges.Sothe

total number of edges is at least 3f, except
eachedgebelongs to two regions, which

means that it is counted twice. So in fact

Apply the result to k5

Each region has at least three edges,
and each edgebelongs to exactly two

regions.

5oe>\342\200\224 ,l.e.^
\342\200\224

Then

e=v+f-2

2e o=> e<v + 2
3

^> 3<5 < 3i/ + 2e - 6
^> e < 3i/ - 6

ae
required

(b) k5 has v = 5 and e -
[\\)

= 10

So 3i/ - 6 = 9 <e, hence K5 is not

planar.

We saw in the previoussectionthat the complete bipartite graph

K3 3 is not planar. However, this graph has v = 6 and e = 9, so it
satisfies the inequality e < 3v - 6 for planar graphs. To show that

K3 3 is not planar we need a secondresult,which applies only to

planar graphs with no 'triangles'(cycleswith three edges).

orked example 6.9

+a

(a) Showthat if a simple, connected, planar graph with more than threeverticeshas no

triangles then e < 2v - 4.

(b) Hence show that K3 3 is not planar.

(Note that this is a strongerinequality than the one in the previous Worked example, because
2v - 4 < 3v - 6 for v > 3. For example, K4 has v = 4 and e \342\200\2246 so e>2v \342\200\224

A, but the graph is still

planar The result does not apply to this graph because it containsclosedpaths of length 3.)

This looks very similar to the previous*

example, except for the condition of no

cyclesof length 3. This means that each

region has at least 4 edges.

(a) Euler's relation:

v-e+f=2

Each region has at least four edges (as the

smallest closed path is of length 4), and each

edge belongsto exactly two regions.

So e> \342\200\224,i.e. f < \342\200\224

2 2

Hence,

e<v+--2
2

<^2e<2v + e-4

<=> e<2v-A

ae required.

^SV^ +c,
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continued...

Apply result from (a) to k3 3
\342\226\240

We need to make sure that this graph

contains no cycles of length three for the

result to apply

(b) K55has v = 6 and \302\243= 3x3 = 9.
It has no triangles, because a triangle would

have to include two vertices from the same

group joined to each other.
So 2v - 4 = <3 < e, hence k3i3 is not planar.

+ )

1-

1h

Exercise6C

+G

(a)

(c)

Questions 1 to 3 concern the
following

four graphs:

A
(b) A^ _D

(d)

1.
Verify

that the Handshaking lemma holds for eachgraph.

2. Write down the number of vertices of odd degreein each graph.

3. Draw each graph in planar form and
verify

that Euler s relation

holds for eachgraph.

Q A planar graph has 5 vertices and dividestheplaneinto 4

regions.

(a) How many edges does the
graph

have?

(b) Draw an example of such a graph. [4marks]

fsM
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Draw a simpleconnected
graph

in which the vertices have the

following degreesequences,orexplain why one does not exist.

(a) 3,3,2,2

(b) 3,3,2,2,1
(c) 2, 2, 2,1,1 [9 marks]

A graph has 10 vertices and each vertexhas degree5.

(a) How many edges does the graph have?

(b) Show that the graph cannot be planar. [7marks]

\302\247J Subgraphs and complements

Sometimes we want to concentrate on the vertices which
are notjoinedto each other, rather than those that are. The

complement of a simplegraph
G is the graph with the same

verticesas G, and an edge joining each pair of verticeswhich are
not adjacentin G. In the diagram shown here, the edgesofGare
colouredblue and the edges of its complement G' arered.

When we take the edges of both G and G'we get a complete

graph. Hence if the graphshave v vertices and G has e edges,

G' has

K2J

\342\200\224e edges.

Sometimes we are only interestedin certainedgesin a graph. A

subgraph of G is a graphwhich contains only some of the edges
of G. In thediagramalongside,a subgraph is highlighted in

red. Note that every graph with n vertices is a subgraphof the
completegraph Kn.

1-

Exercise 6D

1. Draw thecomplementsofthe following graphs:

(a) (i) . (ii)

fsM
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(b) (i)

2. Find the adjacencytables for the complements of the following
graphs:

(a)

H

B D
o
1
1

|o

1
0

0

1

1

0

0

0

0

1
0
0

(b)

e

B C D

o

0

1

1

0
0
1
0

1
1
0
0

1
0
0
0

3. For each of the following graphs, draw all subgraphswith

exactly 4 edges:

(a)

4. Show that each of the following graphs contains K4 as a

subgraph:

(a) m (b)

Topic 10 - Option: Discretemathematics
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Draw a graph G with 5 vertices such that G and its
complementarebothconnected. [3 marks]

(a) Show that a bipartite graph cannotcontain K3 as a

subgraph.

(b) Hence show that if G is a bipartite graph with more than
4 vertices,then its complement is not bipartite.

[7 marks]

1-

Moving around a graph
In many applications of graph theory we are interestedin

different ways of getting from one vertexto another.Depending
onthe problem, we may be required to return to the

starting

vertex, visit every vertex, or there may be restrictionson
whether we are allowed to use each edgemorethan once. All

these different ways of moving around a graphare
given

names

which you must learn.

A walk is any sequence of adjacent edges.A path is a walk with

no repeated vertices,and a trail isa walk with no repeated edges.

B

ABCDE: a path

c

ABCBD: not a path, but a trail ABACD: not a trail

+G

A cycle is a walk that starts and ends at the same vertexand has

no other repeated vertices (so it is a closedpath).A circuit is a

walk that starts and ends at the same vertex and has no repeated
edges(soit isa closed trail). Note that if there are no repeated
vertices then there are also no repeated edges;hence

every cycle

is also a circuit, but not
every

circuit is a cycle.

B_ JO

D A

ABCDE A: cycle and circuit ABCDBEA: circuit but not cycle

^SV^ + c,
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orked example 6.10

For the graphshown in the diagram:

(a) List all paths of length3fromA to D.

(b) List all the cyclesof length4
starting

and ending at B.

(c) Find a trail that uses each edge exactly once.

Thiscan only be done by inspection. Think where we*

can go from A

A path of length 3 has four different vertices

A cycle of length 4 has four different vertices*

Some vertices will appear more than once*

{a) A3CD,AE3D, AECD

(b) 3CEA3, 3ECD3

(c) EA3EC3DC

^^ In the nextsectionwe will see that questions like part (c)
^^^

^^ can only be solvedfor some
graphs.

^^

+ )

1-

1h

+G

Exercise 6E

1. Write down all walks of length 3 from A to D in the following

graphs:

(a) A
b (b)

88 Topic 10 -
Option: Discrete mathematics
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(c) (d)

2. Find all cyclesof length4 in the graphs from the previous

question.

Find the numberof different paths of length n between two

given verticesin K4 if n is:

(a) 2 (b) 3 (c) 4 [5marks]

+ )

1\302\253

1-

J\\

Find the number of different walks of length n between two

given verticesin K4 if n is:

(a) 2 (b) 3 (c) 4 [5marks]

+G

Eulerian graphs
The Konigsberg bridges problem is considered to be the first

published problem in graph theory. Two banks of the river and

two islands are represented by verticesof a graphand the seven

bridges by its edges. The resultinggraphis:

The problem is to find a closed walk that uses each edge exactly
once. This correspondsto crossingeach

bridge exactly once

and returning to the startingpoint.It turns out that this is

impossible, and the searchfor an explanation led Euler to start

developinggraphtheory.
The reason lies in the degrees of the

verticesofthegraph.

> Leonhard Euler (1707-
S 1783) was a Swiss

mathematician who made

immense contributions to

many branches of mathematics.

He is responsible for much

mathematical notation still in use

today: f[x) to represent a

function, X to represent sums,e
as the base of natural logarithms
and i as the simplest imaginary
number. Is new notation new

mathematical knowledge?

^ Q,
\302\243%*..
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A closed walk that uses each edge exactly
once is called

an Eulerian circuit. A graph with an Eulerian circuit is called
an Euleriangraph.
KEY POINT 6.5

In an Eulerian graph every vertexhas evendegreeand it is

possible to find a closedwalk which uses each edge exactly
once.

This result canbeexplained as follows. Every time we visit a
vertexwemust go in and out of it, which uses up two edges.

This also applies to the startingvertex,aswe return to it at the

end. So thenumberofedgesat each vertex must be even.

orked example 6.11

Show that the graph in the Konigsberg bridgesproblemisnotEulerian.

Determine the degrees of all vertices*

In an Eulerian graph all vertices have even*

degree

Degreesof vertices: 3, 5, 3, 3

All vertices have odd decree, eo the
graph

is

not Eulerian.

+G

Remember that the
number of vertices

with odd degree

^u, must be even (Key ^u,
^^ point 6.4)so we cant ^^

have just one vertex
with odd degree.

Even if we are not requiredto return to the starting point, it

is impossible to cross each bridge exactlyonce,becauseofthe

following result:

KEY POINT 6.6

A graph with a walk which uses each edgeexactly
once

(without returning to the starting point) is calledsemi-
Eulerian, and the walk is called an Eulerian trail. In a
semi-Eulerian

graph
there are exactly two vertices with

odd degree,and the walk must start at one of them and
end at the other.

Finding an Eulerian trail is equivalentto drawingthe
graph

without picking up your pen and without goingover
any edge

more than once. This is a good practicalway
to check that you

have found an Euleriantrail.

The explanation is similar to that for an Euleriangraph,with the

difference that the starting vertex onlyneedsan but' edge and

the end vertex onlyan 'in edge,so
they

are the only two vertices

that can have odd degree.

fsM
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orked example 6.12

Showthat the following graph is semi-Eulerian and find an Euleriantrail.

B C

We need the degrees of all the vertices*

The Eulerian trail starts and ends at the odd \342\200\242

vertices, so we can start at A and end at D

Degrees of the vertices:
A = 3I0 = 2,C = 4JP=1IE=2
There are exactly two vertlcee of odd degree,
eothe

graph
is semi-Eulerian.

Eulerian trail: A5CAECD

<^^ Eulerian and semi-Eulerian
graphs

will be used in the <^^
^^ Route inspection algorithm in Section 7D. ^^

Exercise 6F

* )

1-

+G

1. For each graph shown below saywhetherit is Eulerian, semi-Eulerian or neither.

(a) yJK (b)

^ Q, vv,
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(c) (d)

1-

1h

2. Which of the graphs given by the following adjacencytablesare
Eulerian?

(a)

\342\226\240a

H

LA J* C\\D | E
0
1
o

11
1

1
0

0

0

1

0
0
0
0
1

1
0
0
0
1

1
1
1
1
0

(b) D
El o
\342\226\240Ho

K3 i
D 1

o
0
0
i
i

B
i
i
0

0

D

1

1
0
0

(c) A B C D E F

Two graphs,G and H,areshown below:

i

lo
ll
1

10
lo
lo

1

0

1

1

1
0

1
1
0
1
0
1

0
1
1
0

0

0

0

1
0
0
0
1

0
0
1
0
1
0

*

B C

+G

D

G
i i

t m

'E S\\

f i
H

(a) Explain why G is not Eulerian.

(b) Find an Eulerian circuit in H. [5 marks]

^ 4
^

Explain why the graph shown below is semi-Eulerian,and find an

Eulerian trail.

[5 marks]

i U
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Hamiltonian graphs

A Hamiltonian path in a graph visits each vertex exactly once.

A Hamiltonian cycle visitseachvertex
exactly

once and returns

to the starting vertex.Not
every graph has a Hamiltonian cycle;

if it does it is calleda Hamiltoniangraph.

orked example 6.13

Show that the following graph is Hamiltonian:

Find a Hamiltonian cycle by inspection*

AC5DEA is a Hamiltonian cycle, so the

graph
is Hamiltonian.

There is no easy way to check that a graph is Hamiltonian,

except by finding a Hamiltoniancycle.Thereisonecriterion

that is sometimes useful: If in a connected,simplegraph
with

n
n vertices each vertex has degreeat least

\342\200\224
edges, then the

graph is Hamiltonian. This implies that every complete graph
is Hamiltonian (as eachvertexhas degree n - 1). However,
there are

many
Hamiltonian graphs where vertices have smaller

degrees.Two examples are shown here: a cycle and a cube.

/ /I

/
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Exercise 6G

(a)

Problemsabout Hamiltonian graphs can be difficult as there
is no goodcriterion to decide whether a graph is Hamiltonian
ornot.We will see this when tackling the

Travelling
salesman

problem in Section 7E.

1. Find a Hamiltoniancyclein each of the following graphs:

B

K

E i

V

F G7\\

\\H

N

(b)

1-

1h

D C

(c)
f (

\\A

\\d

\\g
9 (

B T

E I

^

c (d)

+G

2. Draw each of the following graphs and find a Hamiltoniancycle:
(a) (i) K4 (ii) K5

(b) (i) k44 (ii) K3;3

Find the number of distinct Hamiltonian cyclesin K3 3. (Two

cycles, one of which is thereverseofthe other, are considered

identical.) [4 marks]

fsM
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Summary

A graph consists of vertices joined by edges.Thenumberofedgescoming
out of each vertex is

the degree of that vertex.

The sum of degrees of all the verticesisequalto twice the number of edges. The number of
verticesof odddegreeis even.

In a digraph edges have direction.

A graph can be represented by its adjacency table.

In a simplegraph there are no loops or repeated edges.

In a connectedgraph it is possible to find a path between
any

two vertices.

In a complete graph every pair ofverticesisjoinedby
an edge. The complete graph with

fn\\

n vertices, K\342\200\236,has

V27

edges.

A tree is a graph with no cycles. A tree with n vertices has n -1 edges.
A bipartite graph has two groups of edgessuchthat only edges from different groups are

adjacent.

A planar graph can be drawn without edgescrossing.
The following relations hold for connected planar graphs:

v \342\200\224e + f
\342\200\2242 (Euler's relation)

e<3v-6

e < 2v - 4 if there are no cyclesof length3 (e.g.for a bipartite graph).

The complement of a simplegraphconsistsofall the edges which are not present in the

originalgraph.
A subgraph contains only some of the edgesof theoriginalgraph.
Different types of walk around a graph include:

Path:A walk with no repeated vertices.

Trail: A walk with no repeated edges.

Cycle: A closed path.

Circuit: A closed trail.

In an Euleriangrapheachvertex has even degree. It is possible to find an Eulerian circuit
which uses each edge exactly once and returns to the

starting point.

A semi-Eulerian graph has exactly two verticesof odddegree.Itispossibletofind an Eulerian

trail between those two verticeswhich useseach
edge exactly once.

A Hamiltonian graph has a Hamiltonian cycle,which visits each vertex exactly once and
returns to the

starting point.

1-

fsM
\342\200\242
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Mixed examination practice 6

(a) Draw the complete graph with 4 vertices, K4.

(b) Show that the complete graph Kn has \342\200\224
(n-l)! different Hamiltonian cycles.

(Two cycles,onewhich is the reverse of the other, are consideredidentical.)
(c) List all the Hamiltonian cycles in your K4 graph. [8 marks]

(a) Decide which of the two graphs shown below is Eulerian, and justify
your answer.

(b) Find an Eulerian circuit in the Eulerian graph from part (a). [5marks]

(a) Construct an adjacency table for this graph.
(b) List all the walks of length 3 from Bto D. [7marks]

(a) Prove that the sum of degreesof all theverticesin a graph is equal to twice
the numberofedges.

(b) Eleven teams take part in a school footballleague,soeach team has

to play ten matches. A teacher wants to produce a schedule such that

each team plays exactly five matches in the first term. Show that

this is impossible. [7 marks]

fsM
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Graph G is given in the diagram

A

(a) Prove that a planar graph cannot have cycles of length 3.

(b) Hence show that G cannot be drawn in planar form. [7 marks]

Q (a) Find the number of edges of a complement,G',of
graph

G with n vertices

and e edges.

(b) Write down the number of edges in a tree with n vertices.

(c) Hence show that G and G'canbothbe trees only if n- 4.

(d) Draw a graph G suchthat G and G' are both trees. [8 marks]

A graph G has e edges and n vertices.

(a) Show that the sum of the degrees of the verticesis twice the number of

edges.

(b) Deduce that G has an even number of verticesof odddegree.
(c) (i) Graph G is connected, planar and divides the plane into exactly four

regions. If (n -1) verticeshave degree three and exactly one vertex has

degreed,determinethe possible values of (n, d).

(ii) For eachpossible(n, d), draw a graph which satisfies the conditions
describedin (c)(i). [9 marks]

(\302\251IB Organization 2007)

(a) Prove that a bipartite graphcannotcontain cycles of odd length.

(b) Show that the complete bipartite graph K3 4 is not Hamiltonian.

(c) Is K44 Eulerian? Justify your answer. [8 marks]

(a) StateEulers relationfora simple,connected, planar graph.

(b) State and prove the correspondingresultfora simpleplanar graph

with two connected components. [12 marks]

6 Graph theory
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In this chapter you
will learn:

\342\200\242how to find a tree
of minimum weight

that connects all the

vertices of the graph
(Kruskal's algorithm)

\342\200\242how to find the shortest

path between two
vertices(Dijkstra's
algorithm)

\342\200\242how to find the shortest

route around the graph
which uses each edge
at least once (Chinese
postmanproblem)

\342\200\242how to find the shortest

route around the graph
which visits each

vertex at least once

(Travelling salesman

problem).

\302\243L 17

]y^

D^ 5
J

A

^7

12

V

The adjacency table
\342\231\246Jf

showing the weights of
4fJ\302\245i

the edges is also called
the cost adjacency
matrix. It is possible to perform
algebraic operationson matrices
to deduce various properties
of a graph.

B

Algorithms

on graphs

In applications where the graphs in question are very large, it

can be difficult to find optimal routes. It is thereforeimportant
to have algorithms which can be implemented on a computer
and are

guaranteed
to find the best solution. In this chapterwe

will meet several such algorithms. We will also seean example
ofaproblemfor which such an algorithm does not existand we
can

only
estimate the length of the shortest possibleroute.

Weighted graphs
Ina weighted graph each edge has a number associatedwith

it. This number is called the weight, and canrepresentthe

distance, time or cost of travel betweenthe two vertices. Note

that this is not the actual lengthof the edge, and that there is no
need to

try
and draw the graph to scale. Alsorememberthat not

all intersections of edges are verticesof thegraph.
Forexample, the graph alongside could represent a road
networkand the numbers could be times (in minutes) taken
to travel between different junctions. So it takes 17 minutes to
travel between junctions B and E. To get from Bto C, you

can

go either via A (which takes 19minutes)orvia D (which takes

12 minutes).

When a graph is large,it may
not be possible to draw it and,

instead,we canrepresentit using
an adjacency table. For a

weighted graph thenumbersin the table represent the weights
of the edges.The adjacency table shown here represents the
abovegraph.Notethat all graphs we consider in this chapter are
simple.

D

B

-

7

12

-

-

7

-

-

7

17

12

-

-

5

-

-

7

5

-

-

-

17
-

-

-

1-
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orked example 7.1

Graph G has theadjacencytable:

A B C D\\ E F

-

-

\302\273

\302\253

-

I\302\253

-

-

-

6

4

9

9

-

-

6

-

5

6

6

6

-

4

-

-

4

-

4

-

7

6

9

5
-

7

-

(a) Write down the degree of vertex C.

(b) Draw G in planar form.

The degree of a vertex is the number of
non-zeroentries in the corresponding row or

column

We can start by drawing the graph with vertices*

in order A,B,C,D,E,F, and then redraw it in

planar form

To draw the graph in planar form, find a *

Hamiltonian cycle first, and the fit in the rest of the

edges. Finally, write the weights on the edges

(a) deg(C)=3

(b)

Hamiltonian cycle: ACDE3FA

7 Algorithms on graphs 99
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Exercise 7 A

1. Construct theadjacencytableforeach
weighted graph shown below:

A
(a) (i)

(b) (i)

(ii)

(ii)

1-

2. Draw a weightedgraphwith the weights of the edges given
in the following

tables:

(a) (i)

+\302\243i

\342\226\240-JL

A

-

6

10

3

-

ii

6

-

4

10

12

C

10
4
-
-

9

D
3
10

-

-

-

E

-

12

9

-

-

(ii)

(b) (i)
A

\342\226\240

H

I

I
\342\226\240

\342\226\240

\302\273

H

\342\226\240

H

H

\342\226\240

\342\226\240

<-

\342\226\240

H

\342\226\240

\342\226\240

\342\226\240

D

u

\342\226\240

H

\342\226\240

B

D

B

*

H
\342\226\240

\342\226\240

D

\342\226\240

\342\226\240

H

m

\342\226\240

D

D

\342\226\240

\342\226\240

A B C D

1-
-

1'
^

l\302\273

-

-

5

-

7

7

5

-

4

9

4

-

4

-

-

9

7

9

-

-

(ii)
A\\ B C D\\ E F

-

-

?

-

-

1'

-

-

5

8

8

8

7

5

-

-

8

-

-

8

-

-

7

-

-

8

8

7

-

3

9

8

-

-

3

-

N4V
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3. Draw in planar form the graph given by thecost
adjacency

matrix:

(a) A

5

7

-

9

B

5

-

5

10

12

C

7

5

-

4

9

D

10

4

-

-

E

9

12

9
-

-

(b)
C D\\ E

-

8

10

10

8

8

-

8

-

-

10

8
-

8

15

10
-

8
-

8

8
-

15
8

-

R The weights of edgesin a simplegraph
G are shown in the

following table:

A

B\302\253

\342\226\240

EI

Rb

\342\200\242>

B

\342\226\240

D

B

B

c

B
D
B
B
B

\302\273

B

B

B

B
B

*

B
B
B
B
B

(a) Draw the graph and list all Hamiltoniancyclesstarting at A.

(b) Hence find the Hamiltonian cycle of
leastweight. [7marks]

Draw the weighted graph corresponding to the giventable and
find the length of an Eulerian path starting at vertex A.

H A I B I C I D I E I F

-

1\"
-

1-
-

11.

1Z

-

9

12

14

-

9
-

9
-

-

12
9
-
-

-

14
-
-
-

10

\302\261u

-

-

-

10

-
[7 marks]

Considerweightedgraph
G given by the following table:

A

B

Q 4

Q 6

B
B-

B

4

-

5

-

-

c

6

5

-

6

5

D
~

~

6

-

5

*

-

-

5

5

-

Without drawing the graph, explain why there is an Eulerian

cycleand find its length, explaining your calculation

clearly. [5 marks]

? ^Ui)^ + Oi..
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The table for the weighted graph G is:

\342\226\240
A

D
~

Q 7

D

Q 8

H
\342\226\241

B

7

-

-

-

5

10

c

-

-

-

8

-

12

D

8
-

8
-

10

9

E

-

5

-

10

-

-

b

-

10

12

9
-

-

(a) Without drawing the graph, explain why G is not
Eulerian.

(b) Graph H is obtained from G by deletingoneedge.Given

that H is Eulerian:

(i) State which edgeshould be deleted.

(ii) Find the length of an Euleriancyclein H. [6marks]

Minimum spanning tree: Kruskal's

algorithm
Six

villages
are to be connected to an internet network

by
cables.

The graph shows distances (in kilometres)between
villages

where a direct connection is possible. What is the minimum

length of the cablerequired?
This is an example of a minimum connector problem.We only

need to include enough edges to createa connected
subgraph.

In particular, there is no need for any cycles: if A is connected
to B via C, then the edge AB is not required.This means that

we are trying to find a subgraph that is a tree and has minimum

possibleweight.Such a subgraph is called the minimum

spanning tree.

Thereisa simplealgorithm
for finding the minimum spanning

tree, calledKruskal'salgorithm.Itworks by adding one edge
at a time, starting with the shortest, and checking that we never
createcycles.This is an example of a greedy algorithm, where
at each stage we pick the best possibleoption(in this case, the

shortest possible edge). We will see later that this strategy does
not

always
work for other types of problems.

In ourexample,the shortest edge is AC, so we add it to the
graph

first. Next we add BF, then BCand CD.Therearethen

three edges of length 6, but AB and CFarenotrequired, as they

would create cycles, so wejust add CE.All the vertices are now

connected, so we have completed our spanning tree.

Topic 10 -
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This algorithm is summarisedbelow:

KEY POINT 7.1

Kruskals algorithm adds edges to the graphoneat a time.

\342\200\242Start by marking all the vertices.

\342\200\242At each stage add the shortest remainingedgeaslong
asit doesnotcreate a cycle.

\342\200\242
Keep adding edges until all vertices have been

connected.

The next example shows how to set out your working so that

your method is clear.You need to show the order in which

you have considered the edges, note which ones you skipped
(becausethey

would create a cycle), and draw your completed
tree.It helps to list the edges in order of length first. Remember

that a tree with n vertices has n-\\ edges,so
you

know when

you have completed the tree. It is alsoa goodidea to draw the

tree as you go along.

The minimum

spanning
*ee is not

necessarily
unique;

there may be more

than one tree,**

the same v/e-g^Vou
are only required

to find one answer

onlessexpliatlytold
otherwise.

+c<

orked example 7.2

Find the minimum spanning tree for this graph:

List the edges in the order
they

were added to the tree, and state the
weight

of your tree.

We start by listing the edges in order* CD2
of length first. If two edges have the EF2

same length, we can list them in any FG2

order AG 2

3CA

Consider each edge in order and \342\200\242 AE 4 skip

add it to the graph if it does not ED4etop
create a cycle AC 5

We skip AE because we already E36
have EF, EG, GA AD 7

As there are 7 vertices,we can stop

after the 6th edge (ED) has been
added

7 Algorithms on graphs
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continued...

We drew the tree as we added the\"

edges, so we have the complete
tree. The weight is the sum of the

weights of all the edges

Kruskal's algorithm is quick and easy to implement on small graphs. However on a large
graph it is difficult to check if you are creating a long cycle. Also, for an algorithm to be

implemented on a computer,we would need an additional algorithm to check for

cycles, and this can be very time-consuming. So for large graphsthere is an alternative,
called Prim's algorithm.

Exercise 7B
1. Use Kruskals algorithm to find a minimum spanning tree for the graphs below Draw each tree

and state its weight.

(a) (i) 1 (ii) A

Topic 10 - Option: Discretemathematics
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(b) (i) 26 B
A_ 6 R

(c) (i)

Q~ 13 j> io
Jv

12 \"M

2. Use Kruskals algorithm to find the minimum
spanning

tree for each of the graphs represented
by

the following tables. Draw each tree and state its weight.
(a) (D \342\226\240nnrann mC D E

-

10
8
7

10

10

-

5

4

9

8

5
-

7

10

7
4
7
-

8

10
9
10
8
-

-
12
16
11
16

12

-

13

14

19

16

13
-

15
18

11
14
15

-

18

16

19

18

18
-

+\302\243i (b) (i) C D E F (ii) A B C D

(c) (i)

-

-

30
-
-

50
45

-
-

70
35
40
-
-

30
70

-

50

-

-

20

-

35

50
-

10
-

15

-

40
-

10
-
15
-

50
-

-

-

15

-

10

45
-

20
15
-

10
-

A

-

4

-

6

-

10

B\\C D E
4
-

5
-

5
-

-

5
-

6
-

4

6
-

6
-

7

-

-

5

-

7
-

2

*
10
-

4
-

2
-

-

25
35
40
-
-

1-

25

-

50

35

40

-

-

35
50
-

45
45
-

40

40
35
45

-

20

35

30

-

40

45
20
-

15
25

-
-
-

35
15
-
-

-
-

40
30
25

-

-

\\A\\B\\C D E\\F

D
O 5

Q 7

Q
O 8
F 8

5

-

6

-

5

-

7

6
-

4
4
3

-
-

4
-

5
2

8
5
4
5
-
-

8
-

3
2
-
-
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12y

l'n

B

17

cr

8

10

10/

16^

L>

15

\342\200\242e

^20

'15

12

14

10

12

10

11
15

C
8
10

12
14

11

D

14

12

13

10

E
9
11
14
13

12

F

10

15

11

10

12

The diagramshowsgraphK.

(a) Draw the minimum spanning tree for K.

(b) It isrequiredto find a spanning tree of least weight
which includestheedgeCF.Explain how you can adapt
Kruskals algorithm to do this.You do not need to find

the tree. [6marks]

(a) Explain briefly what is meant by the minimum
spanning

tree of a graph.

(b) Find the minimum
spanning

tree of the graph given

by the table alongside.Draw your tree and state its

weight. [7 marks]

(a) State the number of edges in a tree with n vertices.

(b) In a
graph

with 12 vertices all edges have different

weights and the shortest edge has weight8. Sharon

finds that the minimum spanning tree has weight 139.
Explain why this can't be right. [6 marks]

A simple connected graph has 5 vertices and 7 edgesof
lengths 10,11, 13, 15,18, 20 and 22.Find the:

(a) minimum possible weight of the minimum spanningtree

(b) maximum possible weight of the minimum spanning tree.
[5marks]

The minimum spanning tree of the graph shownin the

diagramhas
weight

51. Find the range of possible values of x.
[5marks]

Finding the shortest path: Dijkstra's
algorithm

We often need to use graph theory to find the shortestpath

between two vertices. An example might be when the
graph

represents a road network and we want to find the shortest
or the quickest route between two places. There can be

many

possible routes, so calculating the length of eachoneisnot
practical.In this section we will meet an algorithm which canbe

jj implemented on the computer.

The difficulty is that the shortestpath doesnotnecessarily
startwith the shortest edge. Consider the graph alongside.The
shortestedgefrom A is AB, but the shortest path from A to D

is via C. So we needto lookat different ways of getting through
the network,but avoid having to look at all possible paths.

Dijkstra'salgorithmconsiders all the vertices in the graph,
but

only keeps track of the shortest path from the start to
thecurrentvertex.When the algorithm is completed, we can
recovertheshortestpath from the start to any vertex. In order

Topic 10 -
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to do this, weneedtokeepsome information for each vertex as
we go along.This is usually done by drawing a box nextto each
vertex as follows:

order of

labelling

distance
from start

previous
vertex

temporary
labels

A temporary label shows the shortest distance from start found
so far. This information is updated whenever we find a shorter
path.
The labels in the top row are calledpermanentlabels.

They
are

only written in once we know that we have found the shortest

possible path to this vertex.
Orderoflabelling

is the order in which the verticesare
given

permanent labels. The starting vertex will always be labelled1,
but the end vertex will not necessarily be last.We can only be

certain that we have found theshortestpossiblepath once the

end vertex has a permanent label.
Distancefromstartis the shortest distance from the starting
vertex to the currentvertex.
In the last box we write the previous vertex in the final shortest

path. This allows us to workbackfromendto startvertexto
recoverthe shortest path.

The algorithm is much clearerwhen illustratedon an example.

We show in red the information addedateach
stage.

+c<

orked example 7.3

(a) Find the shortestpath from S to T in this graph:

A

C4 WD

(b) Write down the length of the shortestpath from S to D.

(c) If we arenot allowed to use the edge BD, what is now theshortestpath from S to T?

7 Algorithms on graphs
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continued.

Start by labelling S and the vertices\"

adjacent to it.

Vertex A has the least distance from

S, so it gets a permanent label,
which we write in the top row

We now look at vertices which are*

adjacent to A. lis labelled with

3 + 11 = 14.
For 8, 3 + 4 = 7, but 8 already has

label 6, so this is not updated.

The vertex with the smallest

temporary label is C, so this is made

permanent

Vertices adjacent to C are 8 and D. \342\200\242

8: 4 + 1 = 5 < 6, so this is updated.

D: 4 + 4 = 8
Vertex 8 now gets a permanent

label, noting that the previous vertex

in the path of length 5 was C

Vertices adjacent to 8 are D and T.
\342\200\242

D: 5 + 2 = 7 < 8, so it is updated

T: 5 + 8 = 13 < 14, so it is updated

Vertex D now gets a permanent
label,noting that it was reached

from 8

B

3 4 S

3I4|S

r^

,v
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+c<

continued...

T:7 + 5 = 12< 13,soT is updated
\342\226\240

again

It is the last remaining vertex, so it

gets a permanent label

All vertices have permanent labels,
so we can stop

The length of the shortest path is the*
middlenumber in the T's box

We can workbackfrom Tto find the*

actual path

We can use the completed diagram*

to go back from D to S

We look back to when we added

BD: If this can't be done, then D is
not changed from 8 to 7, so Twould

stay at 13. But notice that 1 3 can be

got in two different ways.

The length of the shortest path is 12.

Working back from T:

T-P-3-C-S

So the shortest path is 5-C-3-D-T.

(b) Working back from D:

D-3-C-S

So the shortest
path

from 5 to D is 5~C~3~D,of

length 7.

(c) without 3D\\

5-C-3-T'and 5-C-D-Tboth have length 13.

EXAM HINT
Your solution must contain a diagram with a completed box

for each vertex, like the final diagram in part (a). Don't forget
to list the shortest path and state its length.

EXAM HINT

If a graph is given in a cost adjacency matrix you can follow
Dijkstra'salgorithm as you draw the graph. Begin with the start

vertex and all the edges starting from it. Then add temporary
labels beforemoving on to more edges and vertices.

7 Algorithms on graphs
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Exercise 7C

1. For each of the
following

networks:

- fill in the boxes to carry out Dijkstrasalgorithm

- find the shortest path (or paths) from Sto F
- write down the lengths of the shortest paths from Sto

D,\302\243andF.

For larger versions of the diagrams that can be photocopied and

filled in, see theendof this chapter (pages 131-133).

(a) (i) (ii)

r H Hsj

XT

10y

12

c-

-D

-\302\243
TT

10

5 VF

r3

-6 E

(b)(i)

+c<

(c) (i)

(ii)

(ii)

I\342\200\224Fpx

2. Use Dijkstras algorithm to find the shortestpath from S to T:

(a) (i) A 2\342\200\224D.

x y
12
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(ii)

*-

+\302\243i

3. Use Dijkstras algorithm to find shortest path from StoF in the weighted graphs given by the

following tables:

(a) (i) IB s

D
O 6
O 8

Q 8

D

Q
D
\342\226\241

\342\226\241

A

6

-

4

-

7

-

-

-

B
8
4
-

6
8
5
-

-

C
8
-

6
-

7
-

12

-

D

7

8

7

-

6

11

8

*

-

5
-

6
-

12
9
5

F

-
-

12
11
12

-

6

3

G H

-

-

-

-

9

6
-

5

-

-

-

8

5

3

5
-

(ii) S\\A\\B\\C\\D

B

-
6
4
5
-
-
-

6
-
-
-
6
2
-
-
-

4
-
-
-
5
5
-
-
-

5
-
-
-
-
6
6
4
-

6
5
-
-
-
5
-
2

2
5
6
-
-
4
3
3

-
-
6
5
4
-
5
2

-
-
4
-
3
5
-
1

-

-

-

2

3

2

1
-

(b) (i) A B C D G H I J E

7
4
\302\273 8

15

18

3

12

18

7

22
8
21
24
56

30
16
31 40

42

50

26 39

33 23

Note an unusal

format
of the table

v/hich has appeared

\342\200\242inexam questions
in

the past.

? ^Ui)^ + <*..
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(ii) B D

+\302\243i

Q*.
\\

AK

8/

'
6

7\\

6,

6s

A

Bt

C

B

V

5/

4\\

3/

16

17

yP 8 H.
V3 2 /

10 V/

yw

^0 9 J^

16

<R>-

X^\\J

2/

X

\\3

13 \\

\\l

F

8

^7 /
/5

L

\\2

^^Cr
y^i?.

M

C D

H
D

H
D

H

31 17

41

38

32

25

28

24
31

7

22

23

29

29

46

16

41
42

22

31
21
19 12

The graph represents the cost of train journeys between
different towns.

(a) Use Dijkstras algorithm to find the cheapestroutefrom
S to M. State your route and its cost.

(b) Write down the cost of the cheapestroutefromS to /.

[8 marks]

The diagram showsa networkofroadsand their lengths.

(a) Find the length of the shortestpath from A to G.

(b) The road BEis closedfor repairs. Find the new shortest

path from A to G, making your method clear.

[8 marks]

Thediagramshows a weighted graph. The unknown

length x is a positiveinteger.Ifthe unique shortest

path from A to G is ABCFG, show that there is only one

possiblevalue of x. [6 marks]

This problem was originally +^

posed and studied by the jTlki
Chinesemathematician **++*

Mei-KuKuanin 1962.

We met Eulerian

<^[ graphs in Section <^[
6E

|\302\273j Travelling along all the edges:
Chinese postman problem

The Chinese postman problem, also called the Route
inspectionproblem,isto find a route of minimum length
which useseachedgeat least once and returns to the starting
vertex.Think about a postman delivering letters: He needs to
travel along every street at least once.

If all the verticeshave even degree, there is an Eulerian circuit
which useseach

edge exactly once. If there is more than one
suchcircuit

they
all have the same length, which is equalto the

sum of the weights of all the edges.

If therearesome vertices of odd degree the graph is not
Eulerian, so some edges need to be repeated.We know that

there can only be an even number ofverticesofodd
degree.

For

your exam, you only need to know how to solvetheChinese
postman problem for graphs with two or four verticesof odd

*\\?
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degree. If there are two vertices of odd degree you can use the
following algorithm:

KEY POINT 7.2

Chinese postman algorithm

\342\200\242
Identify the vertices of odd degree.

\342\200\242Find the shortest path between those two vertices,
either

by inspection or using Dijkstras algorithm.
\342\200\242The edges in this shortest path need to beusedtwice,

and all the other edges are used onlyonce.
\342\200\242The length of the route is the total weightof all the

edgesplus the length of the above shortest path.

+c<

orked example 7.4

(a) Find the length of theshortestChinesepostman route for this graph.

(b) State which edgesneedtobeused twice.

(c) Find one such route starting and finishingat A.

A_ 2 B 3 C

Check the degrees of all \342\200\242

the vertices

Find the shortest path from 8 to*

F. In this case, we can do this by

inspection

The length is the weight of all the*

edges plus 7

Find one possible route by*

inspection, remembering that 8/and

IF can be used twice. The easiest

way to achieve this, if possible, is to

include BIFIBat some point

(a)There are two odd vertices: 5 and F

&toF:&-l-F{\\er\\Qth=7)

Total length =42+7=49

(b)Theedqee31and IF are weed twice.

(c) A possible route: A3IFI3CPIPEFGHIHA

v 3*1,** + Q[._
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You need to

Wr\\te down the

lengths of roirtes

for all possible

combinations,
even

tfit seems obvious

which one is the

shortest.

If therearefour vertices of odd degree we need to look at the

lengths of the paths between all possiblepairsand pick the best

combination. For example, if the four oddverticesarecalled A,

B, C and D then they canbepaired up in three possible ways:

AB and CD

AC and BD

AD and BC

To calculatethe
length

of the repeated edges for the first pairing

we need to add the length of theshortestpath from A to B and

the length of theshortestpath from C to D. When we have done

this for all three pairings we thenchoosethe one that gives the

shortest total length of repeatededges.

KEY POINT 7.3

To solve the Chinese postman problemfor a graph with

four vertices of odd degree:
\342\200\242consider all three possible ways of pairing up the four

vertices

\342\200\242find the shortest path for each pair ofverticesand add

up those lengths for each combination

\342\200\242
pick the combination with the lowest total; those edges
needtoberepeated.

orked example 7.5

+c<

Find the length of theoptimalChinese postman route

for the graph shown in the diagramand state which

edges need to be used twice.

Identify the odd vertices*

Write down all three pairings*
and find shortest paths.

Remember that the shortest paths
do not need to be direct

Select the lowest total; those*

edges need to be repeated

Odd vertices: 3, C, D, E

3Cand DE:10+ b = lb (using 3AC)
3D and CE: 10 + 9 = 19
3E and CD: 18 + 17 = 35 (using 3DE and CED)

Repeat edges 3A, AC and DE.

The length of the route is:
(all edges) + lb = 73 + lb = 91

114 Topic 10 -
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Exercise 7D

1. For each
graph

G below:

(i) (ii)

+c<

(a) Showthat G is Eulerian.

(b) Write down the lengthofa Chinesepostman route.

(c) Find a Chinese postman route startingand
finishing

at C.

2. For each graph:

(i) (ii)

(a) Explain why it is impossible to walkalongeach
edge

of the graph exactly once, starting
and finishingat A.

(b) Use the Chinese postman algorithmto find the route of minimum length, starting and

finishingat A, and using every edge of the graphat least once. State the weight of

your route.

7 Algorithms on graphs 1
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(i)

3. For each of the graphsbelow:

^F (ii)

4
^*

(a) List the verticesof odddegree.
(b) Find the length of the optimal Chinesepostmanroute

and state which edges need to be repeated.

(a)Write down the two vertices of odd degree.

(b) State the length of the shortest path betweenthe two

vertices of odd degree.

(c) Hence find the lengthoftheshortestroutewhich starts

and finishes at C and uses
every edge of the graph at

least once. [6 marks]

Thegraphrepresentsthe network of roads in a small town,
with the weights of the edges representing the lengthsofthe
roads.A salesman wants to visit all the houses in the town,

so he must walk along each road once.Hewants to start and

finish at his shop, which is locatedat junction C.

Topic 10 - Option:Discrete mathematics
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V
' W

^ /%

A 0.2 B

\302\260-5
o.<N

7|J '
0.4

0.4
\\^

A

0.3

C

D 0.2

/ \\0.606
X

0.5 >J

0.8/^

A

0.4 if 0.6

E
l

0.5

F

0.4

G

+u

^1

UsetheChinesepostman algorithm to find the shortest possible
route for the salesman. [8 marks]

(a) The diagram showsthe town of Konigsberg with its two

islands and sevenbridges.The bridge between the North

bank (NB) and thesecondisland
(I2)

is closed. In the

corresponding graph, the
weights

of the edges represent the

time, in minutes, to walk between different places.

NB

A tour around the town starts at the North bank, crosses

every bridge at least once (except for the closed one), and
returnsto the North bank. Find the shortest possible time
taken by

such a tour. You must make your methodclear.

(b) The bridge between NB and I2 reopens, and it takes
16minutes to walk between the two places. Find the
shortestpossibletime for a route which crosses every bridge
at least once, starting and finishing at the North bank.

[9marks]

(a) For the graph shown in the diagram, find the shortest route,

which starts and finishesat A and uses each edge of the

graphat least once. Make your method clear and state the
length

of your route.

D

21

F

21

i

12s

>\342\200\224\342\200\224

16

G\\

E

/U 12\\

X14 12y

15

/n

A

18 B 16 c

? 3,
ry\\k

Kn
+ Oi.
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(b) The edgeGHof
weight

16 is added to the graph. Find the
length

of the new shortest route which useseachedgeat

least once, starting and finishing at A. [9 marks]

Weighted graph K has the weights of the edgesshown in the

following table.

A B C D

21
18

21

8
14
42

18

8

21

4

16

14

21

6
4

42
4
6

11

16
4
11

(a) Explain why K is not Eulerian.

(b) Findtheshortestpath between vertices C and F in K.

(c) Findtheshortestroute,starting
and finishing at D, which

uses each edgeofK at least once. Make your method clear
and state the

length
of your route.

(d) It is required to find the shortestroutewhich uses each edge
of K at least once,but does not need to return to the starting
vertex.

(i) Find the least possible length of such a route.

(ii) What start and finish vertices should be usedto achieve

this shortest route? [10 marks]

Visiting all the vertices: Travelling
salesman problem

The travelling salesman problem is to find the shortestroute
around a graph which visits each vertex at least once and returns

to the starting point.Think about a salesman who wants to visit

every town in a region.Thereareseveral versions of this problem,

Hamiltonian cycles dependingon whether the graph is complete and whether we are

<^[ were introduced in <^[
allowed to repeat vertices.If the

graph
is not complete it may not

Section6G. have a Hamiltonian cycle, so visiting each vertex
exactly

once may

be impossible.

The version we will solve is to find a Hamiltonian cycleof least
weight

in a complete graph. In other words,we want to find the

shortest route around a completegraphwhich visits each vertex

exactly once and returns to the
starting point.

One way to solve this problem is to list allHamiltoniancycles
and find their weights. (We know that a completegraphis

always

Hamiltonian.) This is guaranteed to find the shortestcycle,but is

inefficient, or even not feasible, for large graphs.

Topic 10 - Option:Discrete mathematics
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This is because a complete graph with n verticeshas -{n -1)!
Hamiltonian cycles, and this number becomes very large,very

quickly.

This problem is more difficult than it seems.In fact, there is no

known algorithm (other than listingallpossiblecycles)
which

guarantees finding the shortest Hamiltonian cycle.Thebestwe

can do is find upper and lowerboundsfor the problem. These

are two numbers such that we can guarantee that the shortest

possibleHamiltoniancyclehas length somewhere between

them.

For example, in the graphshown here, one Hamiltonian cycle
is ABCDA with length 19.We therefore know that there is a
Hamiltoniancycleof length19,sothe shortest one cannot

be longer than this. In otherwords, the shortest possible

Hamiltonian cycle has length L < 19. We say that 19 is an upper
bound for the travelling salesman problem. This is not the
bestpossibleupper bound. For example, the cycle ABDCA has

length16sowe know that in fact L < 16.It turns out that 16 is

the shortest possible length (so thebestpossibleupper bound),

but we cannot know this without checkingallpossiblecycles.
Onthe other hand, we can be certain that there is no

Hamiltonian cycle shorter than 12.This is because we know that

every Hamiltonian cyclein a K4 graph consists of 4 edges, and
the shortestedgein our graph has weight 3. Therefore L > 12;
we say that 12 is a lower bound for the travelling salesman

problem. So in conclusion, we can
say

that the length of the

shortest possibleHamiltoniancycle,L,satisfies 12 < L < 16.

Upper and lowerbounds are only useful if they are quite
closeto eachother. Knowing that, for example, 3 < L < 97is
not

very
useful. However if, in a large graph,we can

say
that

21 < L < 24, then we have quite a lot of information about the

graph.In many practical problems this level of accuracy is
sufficient.

The method used above for finding upper and lowerbounds

is unlikely to give us a
sufficiently

narrow range for the value

of L. We will now look at some methods which aremore
complicated, but result in much better upper and lowerbounds.

KEY POINT 7.4

Nearest neighbour algorithm for finding an upper bound:

\342\200\242
pick a starting vertex

\342\200\242
go to the closest vertex not yet visited

\342\200\242
repeat until all the vertices have been used

\342\200\242add one more edge to return to the startingvertex.

1-
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This clearly gives a Hamiltoniancycle,soit provides an upper

bound; the shortest possible Hamiltoniancyclewill be less than

this value. In the graphbelow, choosing A as the starting vertex

givesthecycleADBCA of length 17.

A_ 4 B

KEY POINT 7.5

An improved upper bound can be found by starting from a

different vertex.

We want the upper bound to be as smallaspossible.

In this example, whichever vertex we pick we get thesame
upper bound of 17. We know that the shortestpossible
Hamiltonian cycle has length 16 (ABDCA), so this illustrates
that the nearest neighbour algorithm will not always find the
bestpossiblesolution.

We now look at finding a lower bound.
KEY POINT 7.6

A lower bound for the travellingsalesmanproblemcan be

found by using the following algorithm:
\342\200\242remove one vertex (and all the associatededges)from

the
graph

\342\200\242find the length of the minimum spanning treeforthe
remaininggraph

\342\200\242add the two shortest edges connecting the removed
vertex.

We want the lower bound to be as largeaspossible.

For example, removing vertex A from our graph leavesthe
subgraph

shown in red. Its minimum spanning tree consistsof
edgesBD and CD and has weight 8. The two shortest edgesfrom
A are AD and either AB or AC,with the total length 7. Hence

the lowerbound for the travelling salesman problem
is 8 + 7 = 15.

Combining
this with the upper bound we found

earlier,we can conclude that 15 < L < 17.We saw earlier that the

actual minimal Hamiltoniancyclehas length16.

It
may

not be immediately clear why this method givesa lower
bound,especiallyas the edges selected above do not even form a
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cycle. We have selectedthecorrectnumber of edges (if there are

n vertices, any Hamiltoniancyclewill have n edges), including
the two shortest edgesfromA and two shortest edges

connecting the remainingvertices.Soit seems
likely

that any

Hamiltonian cycle cannot be shorter than this.Iftheedges
selected in this way happen to form a cycle,thenwe have found

the solution to the travelling salesmanproblem.
Ifwe remove a different vertex from the graph wegeta
different lower bound. Removing vertices B, C and D fromthe
above graph gives lower bounds of 14, 13and 14,respectively.

Remember that we want to make the lowerbound as large as

possible, because that brings it closerto the actual solution. So

in this case the best lowerbound we can find is 15.

1-*

+c<

orked example 7.6

For the graph shown in the diagram:

(a) Usethenearest
neighbour algorithms starting at A

and going to D first, to find an upper bound for the

travellingsalesmanproblem.
(b) By removing vertex A find a lowerboundfor the

travelling salesman problem.

(c) Write down an inequality satisfied by the length, L, of

the shortestHamiltoniancyclein the graph.

(d) By removing vertex C find an improved lower bound.

(e) Explain why we have actually found the solution of the travelling salesmanproblemfor
this graph.

Start from A and always go to the#

closest vertex not yet visited

We have visited all the vertices, so#
return to A

Find a minimum spanning tree for#

the graph with A removed, then add
the two shortest edges from A

(a)

(b)

AD (2)

D&{2)

3C(Z>)

CE(4)

EA(4)
upperbound -

remove A:

= 15

A

3D {2)

3C{3)

CE(4)
Add edges AD and A3:

lower bound =
(2 + 3 + 4) + (2+ 2)

= 13
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continued...

L is somewhere between the upper\342\200\242

and the lower bound

Find a minimum spanning tree for#
the graph without vertex C

\\

Add the two shortest edges from C*

The upper and lower bounds we0
have found are the same

(c) 13<L<15

(d) remove C:

3D {2)

AD {2)

AE(4)

Add edges CE and CI3:

lower bound = (2 + 2 + 4) + (3+ 4)
= 15

(e) Upper and lower bounds are the eame:

15<L<15

so L = 15 is the solution.

+<i

-^/

Note that in finding an upper bound in part (a),we created
a cycle.This cycle is not necessarily the best one,becauseit

could be that L < 15.The improvedlowerbound in part (d) also

creates a cycle. This is thebestpossiblecycle
because L > 15, so

we cannot find one shorter than 15.

KEY POINT 77

We know that we have found the exact solution to the

travelling salesmanproblemin either of these two cases:

(1) The lowerboundand the upper bound are equal.

(2) We have found a cycle with the same length as the
lowerbound.

r^

*V
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Exercise 7E

Questions 1 to 2 refer to the
travelling

salesman problem on

the following graphs:

(a)(i) *A (ii)
A

(b)(i)

(c) (i) m a b

D
O 32

Q 28

Q 26

O

32

14

21

26

C D

28

14

18
18

26
21
18

22

E

19

26

18

22

\342\200\242B

(ii) 22

(ii) A
I

B C D E

A 22 21 17 22
22 . . 22 , 23 . 31

21

17

22

22

23

31
18
31

18

26

31
26

1. Use the nearest neighbour algorithm starting at A to find an upper bound.

2.
By deleting vertex A, find a lower bound for each graph.

The weights of edges of graph G are
given

in the table:

A I B I C \\d

16

12

\\\302\273

16

18

8

12

18

9

8

8

9

(a) List all Hamiltonian cycles starting and finishing at A.

(b) Hence solve the travelling salesmanproblemfor G.

[5 marks]
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The weights of the edges of a simplegraphGare
given

in

this table:

A\\B\\C DIE

4

3

7

6

4

3
9
7

3
3

8
5

7
9
8

9

6
7
5
9

(a) Explain why the upper bound for the travelling salesman
problemfor G is at most 29.

(b) Usethenearest
neighbour algorithm, starting with each

vertex in turn, to find an improvedupperbound.

(c) By deleting vertex D from the graph find a lower bound for

the travelling salesmanproblemfor G. [11 marks]

Consider the graph given by this table:

A
|

B
|

C |
D | E | F

A 5 10 11 8 7

, 5

10
11

1\"
1'

6

7

8

7

6

7

10

12

7
7

9
10

8
10
9

6

7

12

10

6

(a) Use the nearestneighbouralgorithm starting from A to find

an upper boundfor the travelling salesman problem on G.

(b) By deleting vertex B and using Kruskals algorithmto find

the minimum spanning tree for the resultinggraph,find a

lower bound for the travelling salesmanproblem.
(c) Explain how you know that you have found a solutionto the

travelling
salesman problem, and write down the weightof

theoptimalroute. [9 marks]

Summary

\342\200\242In a weighted graph edges have associatednumbers,calledweights.

\342\200\242A minimum spanning tree of a weightedgraphisa
subgraph

of smallest possible weight
which is alsoa tree.

\342\200\242KruskaPs algorithm for finding a minimum spanning tree involves adding edges in order of

weight and skippingedgeswhich would form a cycle.

\342\200\242To perform Dijkstra's algorithm for finding the shortestpath between two vertices:

- Start by labellingeachvertex connected to the start vertex with a temporary labelwhich is

its distance from the start vertex.

-
At each stage find the vertex with the smallesttemporary label,makeit a permanent label,

and then give temporary labelsto allverticesconnectedtoit.

Topic 10 -
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- If a vertex
already

has a temporary label, it is updated only if the new one wouldbesmaller.
-

Once the end vertex has a permanent label,wecanwork backwards to find the shortest path.
- Thelabelsfor each vertex are recorded in a box, with permanent labelsin the top row.

order of

labelling

distance
from
start

previous
vertex

temporary
labels

The Chinese postman problem is to find the shortestroutearound a graph which uses each

edge at least once and returns to the startingvertex.
- Ifthe graph is Eulerian, the solution is any Eulerianpath.
- Ifthe graph is not Eulerian, we use the Routeinspectionalgorithm

\342\200\242find the shortest path between pairs of verticesof odddegree
\342\200\242the edges in this path need to be usedtwice,alltheother

edges
are used once

\342\200\242the weight of the route is the sumofalltheedgesin the graph plus the weight of the
shortestpath.

The travelling salesman problem is to find the Hamiltoniancycleofleast
weight

in a complete

graph (i.e. the shortest routewhich visits every vertex and returns to the starting point).
-

The exact solution can only be found by checkingallHamiltonian cycles, which is

inefficient.

-
An upper bound can be found by using thenearest

neighbour algorithm.

- An improved upper bound canbefound by starting from a different vertex.

-
A lower bound can be found by removingonevertex,finding

the weight of the minimum

spanning tree for theremaininggraph,
and adding the weights of the two shortest edges

fromtheremovedvertex.
-

The required least weight of a Hamiltonian cycleis somewherebetweenthelowerbound

and the upper bound, LB<L<UB.

- In orderto
get

a more accurate estimate for L we aim to makethelowerboundaslargeas
possibleand the upper bound as small as possible.

1-
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Mixed examination practice 7

(a) Explainwhat is meant by a minimum spanning tree.

(b) UseKruskals algorithm to find the minimum spanning tree for this graph.

List edges in the order you addedthemto the tree,draw your tree and state

its weight. [7 marks]

(a) Outline briefly Kruskals algorithm for finding the minimum spanningtree.

(b) Use Kruskals algorithm to find the minimum spanningtreefor the graph

represented by the following table.Draw the treeand state its weight.

B D

14

15.5
15

14

8.5

12

8.5

22.5

16.5
13

22.5

21

25

21

8

16

8

20.5

10
25
16

20.5

19

16.5

19

18

15.5

12

13

18

11.5

15

11.5

[9marks]

The weights of the edges of a graph with vertices A, B, C, D and E are givenin
the

following
table.

\342\204\242\"

A B H D E

10
15
11
16

10

12
19

13

15

12

18

14

11

19
18

17

16
13
14

17

(a) Use any method to find an upper bound for the travelling salesman problem
for this graph.
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(b) (i) Use Kruskalsalgorithmto find and draw a minimum spanning tree for

the subgraph obtained by removing the vertex E from the graph.

(ii) State the total weightof this minimum
spanning

tree and hence find a

lower bound for the travelling salesman problem for this graph.

[11marks]
(\302\251IB Organization 2006)

We want to solvethe
travelling

salesman problem for the graph K shownhere.

(a) Use the nearest neighbour algorithm starting at vertex B to find an upper
bound for the travelling salesman problem.

(b) By removing vertexB find a lower bound.

(c) Write down an inequality satisfied by L, the length of the shortest
Hamiltoniancyclein K. [10 marks]

A graph has edgeswith weights given in this table:

I JC D

H

1

34

22

1-

1

-

1-

1-

1-

1-
1-

34

-

-

20

11

-

-

-

-

-

22
-
-
-

24
34
-

21
-
-

20
-
-
-
-
16
-
-
-

11
24

-

-

-

26

-

-

-

34
-
-
-
-
-

10
-

21
16
26

-

-

26

-

12

-

-

-

-

26
-

25
-

-
-
-

10
-

25
-
18

-
-
-
-
12

-

18

-

(a) Use Dijkstras algorithm to find the shortestpath from A to /. Write down
the lengthof

your path.

(b) It is required that the path includesedgeFI.Find the length of the new

shortest path.

(c) The path does not need to include FI
any more, but the edge GJ is removed

from thegraph.Findthe new shortest path and its length. [12 marks]

7 Algorithms on graphs
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Consider the travelling salesman problem for this graph:

By deleting each vertex in turn, find a lowerbound for the travelling salesman

problem. [10 marks]

The diagramshowsa plan of a house,with doors connecting adjacent rooms.

(a) Represent the plan on a
graph,

with vertices representing rooms and edges
representingdoors.

(b) Explain why it is not possible to walk througheachdooronce and return to

the starting room.

The table showsdistancesbetweenthecentresofadjacent rooms.

2 3 4 5 6 7 8

J_ 4 6 5

5

m 3 2 4

] 4 I 7

3 2 4

S 5
m \\3

(c) Use Dijkstras algorithm to find the shortestroutebetweenrooms1and 8.

(d) Hence find the shortest tour of thehousewhich passes through each door

at least once and returnsto the
starting point.

[13 marks]
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Q For the graph shownin thediagram:

(a) List the vertices of odd degree.

(b) SolvetheChinesepostman problem for this graph. Show your method

clearly,
list the edges which need to be usedtwice,and state the length of

the optimal route. [9marks]

Q The graph below represents a network of paths connectingseven fountains in

a park:

A

(a) Explainwhy
it is not possible to start from fountain A, walk along each

path exactly once and returnto A.

(b) Find the length of the shortest routewhich uses each path at least once
and returnsto A.

(c) A new path is to be built so that it becomes possible to walkalongeach
path exactly once and return to the startingpoint.Between which two

fountains should this new path be built? [11 marks]

7 Algorithms on graphs
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ft The table showsthe
lengths (in km) of main roads between eightvillages.

7

9

9

7

10

12

12

8

9

10

11

12

10
8
8
5

9

11
10

12

7

12

8

12

11

6

8

8

11

8

5
7
6
8

(a) A road inspector needs to drive alongeachroadto inspect it.

(i) Explain why he cannot return to the
starting village without using

some roads more than once.

(ii) Canheuseeachroad exactly once if he does not have to return to the

starting village? Justify your answer.

(b) A snowplough needs to clearall theroads.Todothis,itmust travel along

each road twice (not necessarilyin oppositedirections).
(i) Explain why the snowplough can start from village A, travel along

each road exactly twice, and return backto A.

(ii) Find the distance the snowplough needs to cover. [9marks]

Graph G has the following cost adjacencytable:

JEM E

-

\302\253

I.

\302\273

l>

6

-

9

8

8

10

9

-

6

10

9

8

6
-

5

7

8

10

5

-

(a) By deletingeachvertexin turn, find a lower bound for the travelling
salesmanproblemfor G.

(b) Explain why this lower bound is in fact the solution to the travelling
salesman problem.
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Appendix A

Fill-in diagrams for Exercise 7C
1.

Photocopy and, for each of the following networks:
- fill in the boxes to carry out Dijkstrasalgorithm
- find the shortest path (or paths) from Sto F
- write down the lengths of the shortest paths from Sto

(a) (i)

D, E and F.

)

rrrir/

^\\
\\

A\342\200\224

4

V

\\\342\200\224

J_

\342\200\224rf

E3N

~

y

V

\\

\342\200\224D

y \\

v y

V

X

A

+\302\243i

? ^Ui)^ + <*..
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(b)(i)

1-

(ii)
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(c) (i)

H*

1-

+\302\243\302\253

\302\243

? 5^>C^ + 0i.
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In this chapter you
will learn:

\342\200\242about different ways to

define a sequence
\342\200\242how to find the formula

for the nth term for

some sequences
defined by recurrence
relations

\342\200\242how to use recurrence

relations to model
varioussituations.

Recurrence

relations

Sequences often satisfy rules, which link each term to one
ormore previous terms; for example, ux

\342\200\2242, un+1
= 2un. By

looking at the numbersin the sequence we can sometimes spot
a pattern; in this casethesequenceis2,4,8,...soun

\342\200\2242n. But

sometimes the pattern in the numbers is notso
easy

to spot. In

this chapter we will learn a
systematic way to find a formula for

some specialtypes
of sequences.

+c<

(\302\24323Defining sequences recursively
You should have seen from the core course that there are two

main ways we can definea sequence:
\342\200\242Deductive rules that link the value of the termto itsposition

in the sequence, for example un
- n2.

\342\200\242Recursive definitions link new terms to previoustermsin

the sequence, for example un+l
= 2un.

This type of rule is alsocalleda recurrence relation, and does

not
fully

define a sequence. For example, the recurrence relation
un+l

- 2un could generate the sequences:

1,2,4,8,... or3,6,12,24,...or0.7,1.4,2.8,5.6,...
To define the sequence fully, we need a startingvalue.For
example, if we also know that ux

- 0.7 then the recurrence
relationgeneratesthe third sequence.

Recurrence relations are classified by how
many previous terms

are needed to find the newterm.In a first order recurrence

the value of each termdependsonly
on one previous term;

un+1
=

2un is an example of a first order recurrence. If a new term

depends on two previous terms, this is called a second order
recurrenceand an example of this is the Fibonaccisequence,
un+2

\342\200\224
un+1 + un. In this case weneedtwo starting values to fully

define the sequence. Higher orderrecurrencesare defined in

the same way, but in this coursewe will only consider first and

second order recurrence relations.

r^

*V
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orked example 8.1

Find the first five terms of the sequence, defined by therecurrencerelation:

un+2
= 3un+1 -2un with u1=lyu2=2

u1 =1

Apply the recurrence relation from third*

term onwards

u2

u5

u4

= 2

-
3^2

\"

= 3u5

-2uy

-2u2

= 4
= e

uR = 3l/a \342\200\2242u* =16

These first five terms suggestthat there is a pattern in the

sequence which lookslikeun
= 2n_1. There is, of course, no

guaranteethat this pattern continues unless we can prove it.
Results about recurrence relations are often best provedusing
induction.

SeeSection 1C for

<^[ more examples of<^[
proofby induction.

+c<

orked example 8.2

A sequence is defined by the recurrence relation un+2
=

3un+1
-

2un with ux \342\200\224\\,u2\342\200\2242.

Prove by induction that un
- 2n~l.

As each term depends on two previous
\342\200\242

terms, we need two base cases

As each term depends on more than*

one previous term we need to use strong
induction

un
= 2n_1 is valid for*The expressionun
= 2n_1 is valid for

n = /c-1 and n = k-2

Always write a conclusion*

When n = 1 : u, = 1= 21~1

Whenn = 2:u2=2 = 22-1

So the statementis true for n = 1 and n = 2.

Suppose the statement is true for all n<k.

Then for n = k:

\"k
= 3tVi

- 2uk-z

= 3(2k-z)-2(2k-z)
= 3(2k-2)-2k-2
=2(V2)
= 2k~'

So the statement is true for n \342\226\240

The statement un
= 2\"~1 is true for n = 1 and

n = 2, and if it is true for all n < k then we

can prove that it isalsotrue for n = k.

Hence it is true for all n by strong Induction.

8 Recurrencerelations
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Exercise 8A

1. Find the first five terms of the sequences defined by the
following

recurrence relations:

(a) un+1=4un+l, \302\253!=1

(b) un
= 4-un_ly Ui=3

(c) un+2
=

un+1un, ux = l,u2 = 2

(d) u\342\200\236=nun_19 \302\253!=2

2. Given that ux
\342\200\2243, u2 \342\200\2245 and un+2 \342\200\224

3un+1
-

2un prove by
induction that un

- 2n +1.

3. A sequence is defined by the recurrence relation an+l
- 2an

-
an_x

with ax \342\200\2245 and a2 \342\200\2247. Prove by induction that an
\342\200\2242n + 3.

4. The terms of a sequence satisfy
the recurrence relation

un+\\ -un+2n-\\ with ux -1. Show that un
- n2 for all n > 1.

This recurrence relation ^f
is an example of a

4fJf^

logistic mop, which
can be used to model

population growth.

Sequences defined by
the logistic map exhibita
rangeof behaviours

(depending on the starting
value). These range from

periodic, where a few values

repeat again and again, to

chaotic, where the pattern never

repeats. In a chaotic sequence,
a small change in the starting

value can have a large effect on

subsequent terms. To analyse
these sequenceswe needa
range of mathematical

techniques, from quadratic
equations to differentiation.

Q3 First order linear recurrence relations
Ina first order recurrence each term in the sequencedependsonly

on the previous term; so we can write un+l
-

f(un). The sequence
is

fully
determined if we know the first term.

Although we can find any term in the sequence by applyingthe
recurrence

sufficiently many times, a solution for un in terms of n

can only be found in somespecialcases.For example, even for a

simple-looking recurrence like un+1
=

4un(l
-

un) with ux
\342\200\2240.6

there is no known expression for un in terms of n. If you plot the
first twenty terms using your calculator, you will find that they

do not appear to follow any recognisablepattern.
In this course we will study only linear recurrence relations,
where the function f(un) involves only multiples of un and no

higher powers, roots, or any other functions.We will only

learn a general method for solving recurrences with constant

coefficients and so we will not consider recurrence relations

such as un+1
=

(n +1)un, where the coefficient of un depends on n.

The general form of a first order recurrence relation with constant
coefficients is un+l

- aun + g(n) (so although the coefficient of

un does not depend on n, another part of the equation does); an

example is un+l -un+n. We will mainly look at caseswhere
g(n)

is

a constant, although the method can beextendedto deal with

many other functions g(n).

So the mostgeneralfirst order recurrence relation we will learn
how to solve in this sectionis un+l

- aun + b. We have alreadymet
two special cases of this recurrence: When a \342\200\2241, un+l \342\200\224un+b

r^

*V

136 Topic10-
Option: Discrete mathematics



*\302\253~

^l*^*

V/
' W

^ />

+<l

produces an arithmetic sequence, so ww
= ux + (n

- l)b; if b = 0

we get a geometric sequence,un
\342\200\224

uYan~l.

To find the solution for other valuesof a and b, let us start with

a particular example:

un+l
- 3un +1 with ux

- 2

If there was no ' +1' in the equation, the sequence would be

geometricand the solution would be of the form c x 3n were

c is a constant whose value depends on the first term. When
we checkthis,it doesnot

satisfy
our equation so we need to

try something different. The simplest way we can modify the
solutionis

by adding a constant, and this works if we selectthe
right

constant:

Ifun=cx3n+dthen:

cx3n+1+d = 3(cx3n+d) + l

=^cx3n+1+d=cx3n+l+3d+l
=^> d = 3d + l

A
1

=> d = \342\200\224

2

We can check that un
- c x 3n \342\200\224satisfies the recurrence

2

relation for all valuesof c.We call this the general solution of
the recurrencerelation.Tofind the formula for our particular
sequence weneedto choosethe value of c which makes the first

term ux \342\200\2242:

1 5
cx3l-- = 2^>c = -

(5) 1
So the formula for our sequence is un

- - \\3n \342\200\224.

You can check that this works by substituting
into the

recurrence relation.

We can use this methodto solve any first order linear

recurrence relation of the form un+1
=

aun + b.

KEY POINT 8.1

To solve the recurrence relation un+1
=

aun + b:

\342\200\242set un
- c x an + d

\342\200\242substitute into the recurrence relation to find d

\342\200\242substitute in the value of the first term to find c.

This method workswhenevera ^ 1. When a = 1 we already
know how to find the solution, as it is an arithmetic sequence
given by un

-
uY + [n

-
\\)b

= bn + {ux
- b).

This is an example of an
*'

application of Occam's

\\ razor, a philosophical

principle that states that

the simplest solution is often the

correct one. What role can this

sort of principle play in

mathematics?

\342\231\246^f
This has some analogies

X*f9% with using integration to

find the equation of a
curve.Integration gives

an arbitrary constant '+c which
can be found by using the

coordinates of one point on the

curve.

In Section 8D
we will use more
complicated
recurrence relations

l^>to
model situations ]^>

involving counting,

but you will not

need to know how to

solve them.

,We can extendthis

method to deal with linear

recurrence relations of the

form un+]
= oun + g(n) for various

functions g.

1-

- *
v>,Ar

Vh
+ d..
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orkedexample8.3

Find the formula for the nth term of the sequence defined by the recurrencerelation

Un+\\ \342\200\224~Un~^ With Ul - 6-

Follow the method above: Write down the#

general form of the solution

Substitute into the recurrence to find dm

Use the first term to find c\302\253#

Let u\342\200\236= c I
\342\200\224

I + d

Then:

cii
+<<=!L1

\\\"

+ d -3

\\/1+1

2

d = -6

+ --3
2

u\342\200\236=c

\\\"

-6

u, =6

6 = c -
U.

c= 24

/. u\342\200\236= 24

-6

-6

-i*\342\200\224>_+~,_!*->_f

+<l

Exercise 8B

1. Find the formulafor un in terms of n for the sequencesbelow:

(a) (i) un+1
= 2un -1, \302\253!

= 3 (ii) wM+1
=

2un +39u1=l

(b) (i) un+1
=

-3un + 2, ux
= 1 (ii) wM+1

=
-3w\342\200\236+ 5, mx

= -2

(c) (i) un+1=-un +1,^=3 (ii) un+1=-un-2,1^=8

f2J Apply
the method from this section to a geometricsequence

defined by ww+1
=

rww and first term uv

[3.J Try applying the method to an arithmeticsequenceun+l -un+d,

where d ^ 0. Where does it fail?

A sequence is given by the recurrence relationun+1
=

5un + 8

with ux
- 8.

(a) Write down the first three terms of the sequence.

(b) Find an expressionfor un in terms of n. [9 marks]
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(a) Find thegeneralsolution of the recurrence relation

u\342\200\236+i=2un-l.

Solving these two equations gives cx
- 2,c2 = -1, so the nth term

of the sequence is given by un
\342\200\2242 x 2n \342\200\2243n.

We can apply the same method to
any

recurrence relation of the

form un+2
- aun+l + bun. Trying a solution of the form un-cxkn

8 Recurrence relations 139
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(b) Find the sequence with first term ux
= 1 satisfying the above

recurrence relation. [8marks]

Second order recurrence
relations

We will now look at second order recurrence relations,
where un+2 depends on two previous terms: un+2

-
f(un+1,un).

This means that we need to know the first two terms to

fully define the sequence. As before,a solutionis
only easy

to find for linear recurrences with constant coefficients,
un+2

=
aun+1 + bun + g(n). Moreover,we will only look at the

case when g(n) =0; such recurrence relations are called

homogeneous.

To developa methodfor solving these recurrence relations, let

us look at a particular example:

un+2
- 5un+1

-
6un with ux -1 and u2

- -1

Motivated by the method for the first order recurrence we can

try to see if thereisa solution of the form un-cxkn for some
constantk.

Substituting
this into the recurrence gives:

cxkn+2 =5cxkn+l -6cxkn

^>kn+2 =5xkn+1 -6xkn

=>A;2=5A;-6

^k2-5k + 6 = 0

^> k = 2 or 3

It looks like therearetwo possible solutions: un-cxx 2n and

un-c2x 3n. You can check that neither solution by itselfworks,as
it is not possible to find cx or c2 to make the first two terms 1and

-1. However, substituting into the recurrenceshows that the sum

of the two possiblesolutions,un-cxx2n +c2x3n satisfies the

recurrence as well. It is nowpossibletousethe values of ux and u2
to find the constants:

ux -1 => 2q + 3c2= 1

u2
- -1 => 4q + 9c2

= -1 i

i

-iaVNoi.



will result in a quadratic equation k2 -ak + b. This is calledthe
auxiliaryequation.The full method is summarised below.

KEY POINT 8.2

To solve a second order recurrencerelation:
un+2=aun+l+bun

\342\200\242Find the solutions, kx and k2, of the auxiliaryequation:
k2 = ak + b

\342\200\242The general solution is un
- cYk\" + c2k2\342\200\242

\342\200\242Use the values of ux and u2 to find the values of cx and c2.

In the above example the
auxiliary equation had two distinct

real roots. We will see later how to deal with the caseofrepeated
rootsor complex roots. First let us apply the method to find the

formula for the nth term of the Fibonacci sequence.

+c<

orked example 8.4

Solve the recurrence relation un+2
=

un+l + un with ux -
u2 -1.

Write down the auxiliary equation\342\200\242

and solve it

Use u} and u2*

If we subtract the two equations we\302\253#

can eliminate

un = cxkn where

kz=k + \\

,k2-k-/\\=0

>k = -

u\342\200\236=d
'\\+S

Y
+ c9

\\-S v

u1
= 1: cy

\\ + S 1-V5-+ c9 = 1

u9 = 1: d
'\\ + S

+ c9
'\\-S =1

3 + V5 3-V5 A

lZ]-ir]=>Ci+c2=0=>c2=-Ci

<=>a

D] =>q

^5=1

1

a 1
s\302\260

\"'\"IS

\\+S 1-Vs
\342\226\240-c. = 1

1_

Y /, /^V^
1--s/5

[1]

[2]
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This method also workswhen therootsofthe auxiliary

equation are complex. The constants cx and c2 will be such that

the imaginaryparts canceland all un are real.

+c<

orked example 8.5

Solve the recurrence relation un+2 + 4un
= 0 with ux -Qyu2-1.

Write down the auxiliary equation and*
solve it

Use the values of u} and u2*

Raising a complex number to a power is#

easier if it is written in polar form

cis#+ cis(-#) = 2cos#

k2 + 4 = 0

=> k = \302\2612i

un=c,(2\\)n+c2(-2\\)n

U) =0=>2cj-2c2\\
= 0

u2 =1=>-4d -4c2 = 1

D]

[2]

[1] =^=^2

[2]
1

-((20\"+(-2i)\

-i(

2\"
\"

5

2cis-
l 2j

^ H7I

^ 2

+ 2c\\e

-nn^

2 J

)1

2\" ^ H7I
= x2cos \342\200\224

& 2

= -2n z
coe \342\200\224

If the last answer seems complicated, you canwrite out the first

few terms to see that the sequence is correct. The final answer
confirmsthat all terms of the sequences are real numbers.
However, you won't always have to simplify fully,

in most

cases un
=

\342\200\224((2i)\"
+

(\342\200\2242i)\"I would be an acceptable answer.

We now look at what happens when the auxiliary equation has
a repeated root.

Considerthe recurrence relation un+2 =
6un+1

-
9un with

ux \342\200\2246,u2\342\200\2249. The auxiliary equation is k2 - 6k + 9 = 0 and has

only
one root, k = 3. If we

try
to set un - cx 3W, then ux - 6

implies c \342\200\2242, but then u2 ^ 9. Soweneedto
modify

the solution

slightly. If we try the next simplestform,un=(c+
dn)

x 3W, we

can use the values of ux and u2 to find constants c and d:

8 Recurrence relations
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ux =6^>(c + d)x3
= 6

u2=9^>(c + 2d)x9 =9

Solving
this gives c = 3,d = -1. You can check that

un-(3- n)3n satisfies the recurrencerelation.This form of

the solution will work whenever the
auxiliary equation has a

repeated root.

KEY POINT 8.3

I To solve a second order linear homogeneousrecurrence
I relation when the auxiliary equation has a repeated rootk,
I set un \342\200\224(c+ dn)kn.

orked example 8.6

Solve the recurrencerelationun+2
\342\200\224

2un+1
-

un given that ux \342\200\224
\\,u2

\342\200\2242.

Write down the auxiliary equation and#
solve it

Use the values of u} and u2*

-2k + 1= 0=>k = 1

Let un
=

(c + dn) x 1\"

Then

u1
= 1=> c + d = 1

u2 =2^>c + 2d = 2
:.c = 0,d= \\

5o il = n

+c<

Exercise 8C

1. Solvethe
following

second order recurrence relations:

(a) un+2
=

5un+l -6un, uY
= 5,u2 = 13

(b) un+2=4un, Ul=4,u2=0

(c) un+2
=

?>un+l -2un, ux=9, u2=13

2. Find the formula for the nth terms of the sequencegivenby
the

recurrence relation:

(a) un+2
-

4un+l + 4un
= 0, uY

= 4,u2 = 12

(b) un+2
=

2un+1 -un,ux = 5,u2=7

142 Topic 10 -
Option: Discrete mathematics



*\302\253~ 3u. ^ I

h^A*1 ^ -^5*\302\273c+^

V
' W

3. Solve the following recurrence relations, leaving your answerin
thecomplexform.

(a) un+2
=

2(un+1 -un\\ ux
= -6, u2 = 0

(b) un+2
=

4un+1
- 13un, ux

= -10, u2 = -40

4. Solvethe
following

recurrence relations and write the solutions

explicitlyin realform.

(a) un+2
= un+1 -un9u1=l9u2= -1

(b) un+2
=

2(un+1 -un\\ ux
=

-6,\302\2532
= -12

A sequence is defined by therecurrencerelation

un+2
\342\200\224

4un+1
-

2un for n>ly and uY
= 1, u2 \342\200\2243. By solving the

recurrence relation find an expressionfor un in terms of n.

[11 marks]

Two sequences, an and bn, satisfy the recurrence relations

an+l=3an+K K+l=5<*n-K

with ax \342\200\2246,bx
\342\200\224-6.

(a) Find the value of a2.

(b) Showthat an+2
\342\200\224

2an+1 + 8an.

(c) Solve the secondorderrecurrencerelation for an.

(d) Hence find an expressionbn in terms of n. [18 marks]

+c<

[SJD Modelling using recurrence
relations

In this section we will look at some examplesof the application
ofrecurrencerelations. First order recurrence relations can
be used to modelsituations that involve repeated percentage
increases, for examplesavings

accounts or debt repayment
schemes.

orked example 8.7

A savings account pays 0.3% monthly interest added to theaccountat theendofeachmonth.

At the start of each month $100is paid into theaccount.Let un be the amount of money in the
accountat the end of month n (after the interesthas beenpaid).Find an expression for un in

terms of n and hence calculatethe amount of money in the account after two years.

We can find a recurrence relating un+]
*

to un. In month n + 1, add 100 and
then increase by 0.3%

:1.003(u\342\200\236+100)
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continued...

This is a linear recurrencerelation,sowe*
know what form of solution to try

Find the first term and use it to find c#

'After 2 years' is the end of month 24 \342\200\242

Set un =cx/\\.OOZ)n +d\\

c x 1.003\"+1 + d = 1.003cx1.003\"
+ 1.003^ + 100.3

=>-0.003d = 100.3

=>d= -33433-
3

At the end of first month

Ul =100x1.003 = 100.3

cx1.0031- 33433- = 100.3
3

1
=> c = 33433-

3

.\\u\342\200\236=33433-(1.003\"-1)
3

After 2 years:

u24
= 2492

There will be $2492 in the account.

k^^ ,T^^^^'*^^^^^*^^l&^**^^*M**.^****tM*-\302\243^\342\200\224l^r

+c<

We can also use recurrence relationsto solvesome
counting

problems. In fact the Fibonacci sequence was first written down

to model the size of a rabbit population.We look at this in the

next example.

orked example8.8

A farmer starts with a pair of rabbits.Assume rabbits do not breed in their first year, but from
thesecond

year
onwards each pair produces one pair per year,

a male and a female.

(a) Find a secondorderrecurrence relation for the number of pairs of rabbits, un in year n.

(b) Hence find how
many pairs of rabbits the farmer will have after ten years (assuming all

survive).

In year n, there are all the rabbits from#

the previous year plus all the new ones
born that year

(a) The number of pairs in year n is:

all the rabbits from the previous year (tv-i)

PLUS

new rabbits (un_z, because they only born to

pairs which are two or moreyeareold)
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continued.

We need the starting values\342\200\242

We recognise this as the Fibonacci \342\200\242

sequence for which we already know
the formula

(b) Year 1:1^=1
Year2:u2=1

Fibonacci sequence:

u\"
=

s

]+ y/E 1-S
v\302\253\\

Hence u,0 = 55

'(:

1-

There are many other recurrence relations that model population growth, taking into account

various factors such as death rate and competition for resources. Models that involve two

interacting species give particularly interesting results. Find out about the Lotka-Volterra

equations for the predator-prey model.

Exercise 8D

+c<

\302\2431000 is invested in a bank account, which
pays compound

interest at the rate of 4% per annum.
By

first writing a

recurrence relating the amount of money in
year

n + 1 to

the amount of money in
year n, find how much the

investment will be worth at the end of the 15th year (after the

interest is added). [8 marks]

A savings account pays 5% interest per year.At the start of each

year $2000 is paid into the account and the interest is added
at the endofthe

year.
Let un be the amount of money in the

accountin year n, after the money for that year is paid in but
before the interestisadded.

By solving a recurrence relation find

an expressionfor un in terms of n. [10 marks]

A loan of \342\202\25416000is to be paid off in monthly instalmentsof
\342\202\254350.The interest charged on the loan is 1%permonth, and is

added before the payment for that month is made. Let un be the

amount owed at the start of month n (so ux
= 16000).

(a) Explain why un+l
=

1.0\\un
\342\200\224350.

(b) Solve the above recurrence relation.

(c) Hencefind how many months it will take for the debt to be
paidoff. [11 marks]

>

- *
v*,>r

Un
+ Oi..
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Chung
climbs up the stairs either one or two steps at a time. Let

un be the number of ways in which she canreachthe nth step.

(a) Explain why un
-

un_Y + un_2.

(b) Write down the valuesof ux and u2.

(c) Hence find the number of different ways Chung can climb a

flight
of 12 stairs. [10 marks]

Omar decidesto
vary

the amount of time he spends on his
mathematicshomeworksothat each day he spends the average
of the amountoftimethat he spent on the previous two days.
Let tn be amount of time, in minutes, Omar spent on his

homework on day n.

(a) Write down a recurrence relationfor tn + 2in terms

oftn + 1<mdtn.

(b) Given that Omar spent 15minuteson his homework on

day 1 and 27 minutes on
day 2, find an expression for the

time hespendson his homework on day n.

(c) Describe the long-termbehaviour of the sequence tn. %

[11 marks]

n lines are drawn in the planesothat no two are parallel and

no three passthrough
the same point. Let Pn be the number of

intersection points.
(a) Explainwhy Pn+1

\342\200\224
Pn+n.

(b) Write down the value of P2.
n2 \342\200\224n

(c) Prove by induction that Pn
\342\200\224 for all n > 2. [10 marks]

Let un be the number of sequences consisting of Osand Is,
which do not contain two consecutive Os.

(a) By considering the possibilities for the last digit of a string
of length n, explain why un

\342\200\224
un_x + un_2.

(b) Write down the valuesof ux and u2.

(c) Hence find the number of 16-digitstrings consisting of Os

and Is which do not contain two consecutive Os. [10 marks]

Topic10-
Option: Discrete mathematics
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In the game of Towers of Hanoi therearen rings of different

sizes and three pins. Theringsstartonthe first pin, arranged in

order of size so that the largest one is at the bottom. The object
of thegameisto end up with all rings on a different pin, still in

decreasingorderofsize.At no point can a larger ring be placed ,
ontopofa smaller ring. /

Let Hn be the minimum number of moves needed to complete
thegamewith n rings.

**

(a) Find the values of H1and H2.



^ />

The strategy for the game is as follows:
- Move all rings, other than the largest one, to the

secondpin.
Move the largest ring to the third pin.
Move all the other rings from the secondto the third pin.

(b) Explain why, if this strategy is followed,Hn
=

2Hn_x +1.

(c) Find an expressionfor Hn in terms of n, and hence find the
minimumnumberofmoves needed to complete the game
with 10 rings. [13marks]

Q A bank charges 5% annual interest on a loan. At the end of each

year, the interest is addedand then a fixed amount, R, is paid off.

(a) If the amount borrowed is $1000,show that the amount

owed at the start of year n is (1000- 20#)(l.05)w_1
+ 207?.

(b) Find the minimum value of R, correct to the nearest dollar,
so that the loan is completely repaid after 10years.

(c) Forthis value of R, what is the total amount repaid(tothe
nearestdollar)?

(d) What is the minimum annual repaymentrequiredsothat

the loan is eventually paid off? [12 marks]

Summary

In this chapter we looked at methods for solvinglinearrecurrencerelations.
\342\200\242A first order linear recurrence un+1

=
aun + b has solution of the form un

\342\200\224can + d.

\342\200\242To solve a second order linear homogeneousrecurrenceun+2
=

aun+1 + bun we first need to
solvethe

auxiliary equation k2 \342\200\224ak+ b.

If the equation has two distinct roots /q, k2 then the solution is un
\342\200\224

cYk\" + c2^2-

If the equation has a repeatedrootthen the solution is un=(c + dn)kn.

\342\200\242The constants can be found by substitutinginto the recurrencerelation and using starting
values of un.

\342\200\242You need to be able to write down recurrencerelationsto model
counting problems and

financial situations.

8 Recurrencerelations



Mixed examination practice 8

Find an expressionfor un in terms of n for the sequencedefined
by

ux
- 0,un+1 =

5un +1 for n > 1. [8 marks]

The value of a car decreases by 8% each
year.

(a) Write down an equation for the value of the car after n years, un, in terms of

its value in the previousyear.

(b) Given that the value of the car after one year was $8500 find how long it
will take for it to fall below $4000. [9marks]

Solve the recurrence relation un+2
- 5un+1

-
6un given that ux -1 and u2

- 3.

[10 marks]

Q Solvetherecurrencerelation un+2 + 4un+1 + 4un
= 0 with ux

- -4 and u2
- 4.

[10 marks]

Given that ux \342\200\2246,u2\342\200\224-36 and un+2 + 9un =0 for n > 1,find an expression for

un in terms of n. [10 marks]

Solvetherecurrencerelation an+l
- -(an_1 + an) given that ax -\\,a2- 4.

[10 marks]

A magic crystal produces several new crystals every day. The crystalsthat were

produced the previous day produce onlyone new crystal, but the older ones

produce 9 new
crystals

each.

(a) If cn is the number of crystalson
day

n:

(i) Write down the numbers of crystalson
days

n - 1 and n - 2.

(ii) Write down the number of crystals which are
exactly

one day old on

day n.

(iii)Find an expressionfor the total number of new crystals createdon
day

n.

(iv) Hence explain why un
- 2un_x + 8un_2.

(b) Harry was given two newly-formed magic crystals
on the first day of term,

(i) How
many crystals does he have on the second

day?

(ii) Find an expression for the number of
crystals Harry has on the nth day

of term. [16 marks]

A sequence has the first term ax
- \342\200\224and satisfies the recurrence relation

0\302\253+l
=

3an
~ b.

Find an expressionfor an in terms of n and b. [6 marks]

n straightlinesaredrawn in the plane so that no two are paralleland no three

pass through the same point. They
divide the plane into un regions,

(a) Explain why un+1
\342\200\224

un+n + \\.

(b) Prove by induction that un--n2 +\342\200\224\302\253+ !. [8 marks]
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Summary
and mixed

examination practice

Introductory problem revisited

) Suppose you have a large supply
of 20 cent and 30 cent stamps.In how many different

I ways can you make up $5postage?

Letx and y be the number of 20 cent and 30centstamps,respectively
We want to solve the

equation 20.x+ 30y = 500with x and y non-negative integers. This is a linearDiophantine

equation, so we use the method from chapter4.
As

gcd(20,30)
= 10, we write 10= 20(-l) +30(1).

Hence one solution of the equation is x \342\200\224-50, y \342\200\22450.

The general solution is x = -50 + 3/c, y
\342\200\22450 - 2A.

We need x,y > 0 and, rememberingthat x, y are integers, this gives k > 17and k < 25. There

are 9 pairs (x,y) satisfying
these conditions, so there are 9 different ways to make up the

required postage.

Although
number theory and graph theory have a surprisingnumberofrealworld applications,

their mathematical significance is due to the
beauty

of the proofs which are associated with these
areas.In this option we focussed on three new types ofproofwhich allowed us to justify the

methods we use:proofby contradiction, the pigeonhole principle and strong induction.

Themainthrust of the number theory section was working towards solving Diophantine equations.

To do this, the Euclidean
algorithm

was needed which arose based upon the
study

of greatest

common divisors.

Modular arithmetic, the
study

of remainders when a number is divided,providesanother
useful tool to look at divisibility. Easier modular arithmeticproblemscan be solved using linear

congruences. One applicationof Diophantineequations is in the solution of hard problemsin
modulararithmetic,particularly

the Chinese remainder theorem. Also, Fermats little theorem

provides a very powerful tool for determining the remainder when we are workingwith powers of

numbers.

Graphs are a way of representinginformationabout connections between objects. Once a graph
has beendrawn several questions can be asked about it, such as:

\342\200\242Can a walk around the graph go throughevery
vertex exactly once (Hamiltonian path)7.

\342\200\242Can a walk around the graph go alongevery edge exactly once (Eulerian trail)7

There are alsooptimisationproblemswhich can be solved such as:

\342\200\242
Finding the minimum spanning tree (solved usingKruskalsalgorithm)

\342\200\242
Finding the shortest path between two vertices(solvedusing Dijkstras algorithm)
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\342\200\242
Finding the shortest route around a graph usingeach

edge
at least once (the Chinese postman

problem,solvedusingthe Route inspection algorithm)

\342\200\242
Finding the shortest route which visits every vertexand returnsto the

starting point (the

travelling salesman problem). This problem cannotin general be efficiently solved, but we can
find upper and lower bounds.

Finally, recurrence relationsarea
way

of defining sequences based upon previous terms in the
sequence.They

can be solved by applying standard trial functions and
fixing

the constants.

Sequences defined using recurrence relationsarisebothwithin mathematics and in applied fields

such as financeand biology.
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Mixed examination practice 9

1. @) Show that 242 -1 is divisible by 43.

S3 Show that if d \\ n then (2d -1) | (2n -1).

Hence show that 242 -1 is divisible by 63. [8 marks]

2. A simple, connected graph has 5 vertices, each with the same degree, d > 0.

What are the possible values of d7. Justify your answer.

For each possible value of d:

(i) Draw an example of such a graph,

(ii) Statewhetherornot
your graph is Eulerian, and if it is find an Eulerian

circuit.
Forthe graph with the largest possible value of d find a

Hamiltonian cycle. [12 marks]

A number N has digits {akak_x...a^), so that:
N =

ak 10* + ak_x\\Qk~l +... + \\Qax + a0. Prove that if N is divisible by 3 then

ak + ak_x +... + ax + a0 is also divisible by 3.

State a similar result if AT is divisible by 11.

Find all possiblevaluesof digitsa and b so that the number (199 lab) is
divisible by 33.

Show that a number is divisible by 5 if and only if the sumof its base 6

digits is divisible by 5.

Henceshow that
(223412)6

is not divisible by 5. [21marks]

4.
^H

Use the Eulidean algorithm to find gcd(610,366).
RSI Solvethelinear

congruence
366.x = 732(mod610). [13 marks]

Define the complementofa graph.
1DJ If H is a simple graph with 20 edgesand its complement has

16 edges, how many verticesdoesH have? [6 marks]

6. Define the following terms:

(i) bipartitegraph

(ii) degree of a vertex.

9 Summary and mixed examination practice
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The diagram shows two graphs, K and L.
K L

D

3J Determine whether or not K is bipartite.
Find an Eulerian trail in L. [6 marks]

UseFermatslittle theorem to prove that x = ap~2b(modp)is a solutionof
thelinear

congruence
ax = b(modp), where p is a prime which doesnot

divide a.

3] Hence, or otherwise, solve 2x=ll(modl7).
Solve the system of linear congruences:

2x = ll(modl7), 5x= l(modll) [10 marks]

Show that if a base 12numberis divisible by 9 then the number formed by
its last two digits is divisible by 9.

2J (i) Find theremainderwhen 350 is divided by 13.

(ii) Find thelast
digit

in the base 13 expansion of 350.

(i) Show that if a base 13numberis divisible by 12 then the sum of its

digitsis divisible by 12.

(ii) Hence show that (3114CC)l3 is not divisible by 12. [16 marks]

Show that the number of distinctHamiltonian cycles in a complete graph

with n vertices is \342\200\224In-1)!
2V

}

List all the Hamiltoniancyclesfor the graph shown in the diagram.
A

Hence solve the travelling salesman problem for this graph. [9 marks]
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10. Graph K is shownin thediagram
P

11.

Show that K is not planar, but that every subgraph of K is planar.
Which edge should be removed from K so that the resulting graph is

Eulerian?

Find a spanning tree for K.

Show that K has a Hamiltoniancycle.

Findtwo integers m and n such that 90m + 48n= gcd(90,48).
(i) Find the general solution of the Diophantineequation

90.x+48;/=624.
(ii) Show that there are no solutions with both x and y positive.

Solve the linear congruence 48.x= 54(mod90).List all the non-congruent
solutions (mod 90).

12.

Theweightedgraph
G is shown above. Graph G is producedby deleting

vertex A from G.

Use Kruskalsalgorithmto find the minimum spanning tree of graph G
and state its weight.

2J Hence find the weight of a lower bound for the Hamiltonian cycle in G

beginning at vertexA.

Prove for a complete graph with n vertices (with n > 3), that no more than

(n-\\)\\
Hamiltonian cycles have to be examined to find the Hamiltonian

cycleof least
weight.

gg
How many cycles in G would have to be examined to find the one with the

least weight? [12 marks]

(\302\251IB Organization 2007)

^f*!*!** + 01.
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13. For the graph shownbelow:

C 6
E

4
G

Explain why it is not possibleto find a route, starting and finishing at A,
which uses eachedgeexactly

once.

Use Dijkstras algorithm to find the lengthoftheshortestpath from S to T.

Hence find the length of theshortestroutewhich starts at A, goes over each

edge at least once, and returns to A. Give an exampleof sucha route.
Show that the number of vertices of odd degreein a graph must

be even. [17 marks]

14. ^H Draw the complete graph with 5 vertices, K5.

fig) Explain why a bipartite graph cannot containcyclesofodd
length.

Hence show that K5 is not bipartite.
Usetheresultofpart (b) to prove that the complete bipartite graph K4 3 is

not Hamiltonian.

For what values of m, n is the graph Kmn Hamiltonian? Justify your answer.

[12 marks]

15. Forthe
graph

shown in the diagram:

B 4

Explainwhy
this graph is not Eulerian.

2) Find theminimum
length

of a route which uses each edge exactly
once

and returns to the starting point. [6marks]

16. (gj Use the Euclidean algorithm to find gcd(66,42).

Ba) Explainwhy
the equation 66.x + 42y = 9 has no integersolutions.

For which values of m does the equation 66.x+ 42y
= m have integer

solutions?

Solve the equationfor m - 18. [12 marks]

154 Topic 10 -
Option: Discrete mathematics

^ q,vv, \342\200\242V^+ o



(* * ^
1^ ^ ^1 v

' V

c+^

17.
^H

Prove that for two positiveintegersa and b, lcm(a,b) x gcd(a,b)
= ab.

BS) UseEuclid's
algorithm

to show that In + 2 and 4n +1 are always coprime.

Use the resultofpart (b) to find lcm(702,401). [12 marks]

18. (Qj Prove that in a planar graph, e < 3v - 6.

fi51 G is a simplegraphwith n > 3 vertices and e edgessuchthat both G and

its complement, G', are connectedand planar,

(i) Write down the number of edgesin G'.

(ii) Show that n<10. [10 marks]

19. Consider this graph:

.14 9. k12

B

5.5/

V 15

^S.
r

/ 13

irs.

16.5

v

21

y

*H

12

11

G

n.2

Find a minimum spanningtreefor this graph. Draw your tree and state
its weight.
How many spanning trees are there of the same

length
as the tree you

found in part (a)? [8marks]

20.
^H

Solve the simultaneous congruences 3x = 6(mod5),4x=6(mod2).
da) Consider the simultaneous congruences 3x = 6(mod5), 4x =6(mod2),

x = 7(modl 1). How many non-congruent solutions(mod550)arethere?

Explain your reasoning. [7 marks]

21. A sequence is given by the recurrence relation un+2
=

un+1 + 6un with

ux --\\yu2 =17.

^ Write down the first five terms of the sequence.

S) Solvetherecurrencerelation. [10 marks]

22. The weighted graph H is shownbelow.

B 4 c

Use Kruskal's Algorithm, indicating the orderin which the edges are

added, to find and draw the minimum spanning tree for H.

9 Summary and mixed examination practice
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23.

ai (i) A tree has v vertices. State the number of edgesin the tree, justifying

your answer.

(ii) We will call a graph with v vertices a 'forest' if it consistsofc
components each of which is a tree.

Here is an exampleofa forest with 4 components.

yYy r
How many edges will a forest with v vertices and c components have?

A graph has an odd number of vertices.Prove that the degree of at least

[17marks]

(\302\251IB Organization 2008)

one of the verticesmust be even.

Prove that a tree with n vertices has n - 1edges.
OJ The table shows distances (in metres) betweenfive workstations in an office.

I 3 I 6 I 3 I 8

3 3 5 5

6 3 4 6
3 5 4 3
8 5 6 3

(i) Find the minimum spanning tree for the graphrepresentedby
this table.

(ii) State the minimum length of cablerequiredto connect all the

workstations.

(i) Explain how you cantellthat the graph is Eulerian.

(ii) Find an Euleriancycleand state its length. [18marks]

24. Consider the weighted graph with the weightsof theedgesshown in the

following table:

36

41

44
50
52

36
-
38
42

48

40

41

38

-

35

41
52

MSM

44

42

35

-

44

50

50
48
41
44

-

48

52

40

52

50

48
-

UseKruskal's algorithm to find the minimum spanning tree.

Forthe
travelling

salesman problem on this graph:

(i) Remove vertexA to find a lower bound.

(ii) Remove vertexBto find another lower bound.

(iii) State which of the two lower bounds is better.

rsM
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(q) By considering the cycleABCDEFA find an upper bound, and hence write
an

inequality
satisfied by the solution of the travelling salesmanproblem.

[15marks]

25. Julie borrowed \302\2431050 which is to be paid back with the annual interestrateof
5%.At the end of each year, Julie paysback\302\243100before the interest is added.

Let
un

be the amount Julie owes at the start of
year

n.

Pj Explain why un+1
=

1.05un -105.

Sal Find an expressionfor
un

in terms of n.

BHj Find how longit will take for Julie to pay off the debt. [12marks]

^^VNc*.
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Answers

ANSWER HINT

For this Option, when you are asked
to prove or show, there will not be any
answers supplied; in some cases hints have
been provided.

Chapter 1

Exercise 1A
1. Assume that n2 is even but n is odd, and consider

nxn.

2. Assume that there are such numbers and factorise
the expression.

3. Assume that log2 5 = \342\200\224and rearrange this

expression to get even = odd.

4. Suppose that L is the largest even integer and
considerL+2.

5. If this was not true, all of them would be under 18;
what can you say about the average?

6. Assume that a + b = c where a and c are rational

and b is irrational, and consider c \342\200\224a.

7. Assume that C ^ 90\302\260,and consider two possible
cases:C< 90\302\260and C > 90\302\260.In each case draw a

perpendicularline from C and apply Pythagoras

to the resulting triangle.

8. (a) -0.682

(b) Write x = \342\200\224and show that p and q must

both be even.

Exercise IB
i. n
2. Think about possible remainders when a number

is divided by 7.

3. Letthe 'pigeonholes' be (1 and 8), (2 and 7), (3

and 6) and (4 and 5).

5. What happens when you add 10numbers which

have the same last digit?

6. (b) How many different numbers of friends are

possible?

7. Cut along a great circle passing through two of

the points.

8. Consideran equilateral triangle of side 1 cm.

9. Divide the square into 25 equal squaresand find the

radius of the circlewhich covers one of the squares.

10. Pick one vertex and look at the five lines from
it: Three of them must be the same colour. Then

consider the three endpoints of those lines and the

three lines connecting them.

Exercise 1C

4. Express Fn+l in terms of Fn and look at the last digit.

6. You can go from n \342\200\2244 to n. How many base cases
are needed?

7. In the inductive step, use proof by contradiction
and double angle identity.

9. Think about how the number of regions increases

when another line is added.

Chapter 2

Exercise 2A
1. (a) (i) 3,4

(b) (i) 3

(c) (i) 3,4
(d) (i) 4,11

(ii) 4,11

(ii) 3

(ii) 4
(ii) 4,11

2. (a) (i) (fl,b) = (0,0),(9,0),(5,4),(l,8)
(ii) (3,2), (8,6)

(b) (i) (0,8),(4,4),(8,0)

(ii) (2,8),(6,4)
3. (\302\253,&)

= (0,7), (4,0), (7,3)

5. Write q
=

kp

6. Factorise the expression

9. 525, 555, 585

10. (a) n a multiple of 9 (b) n even

Exercise 2B

(a) (i) 4,612
(b) (i) 45,900

(c) (i) 1,4536
(d) (i) 28,56
(e) (i) 8,576
(f) (i) 3pqy18p2q

(ii) 75pq2

(ii) 7,210
(ii) 45,1080

(ii) 1,4165

(ii) 35,105
(ii) 9,54

3. Write p = md, q-nd and show that d < 1

4. Write a +b=md, a-b-nd and show that \\fd>2

then d\\a, b

Exercise 2C

i.

2.

(a)
(b)

(c)

(d)

(e)

(a)
(b)

1
1
21
80

2

m =

m =
3,n = -l
-25, n =

Answers
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(c) ra = -l,n=l
(d) m = 1, n = 0
(e) ra = 67, n = -29

3. (b) x = ll,y =-21
4. p= 2, g

= -3

Exercise 2D

1. (a) (i) 23X3X5 (ii) 23x52

(b) (i) 22x43 (ii) 2x3x23
(c) (i) 5X31 (ii) 5X47

2. (a) 2x3x3x47

(b) (i) 94 (ii) 26508

Mixed examination practice 2

1. (2,2),(5,2), (8,2), (1,6), (4,6), (7,6)

2. (b) m = -27, n-137 is one possibility

4. (a) (a-b)(a + b)(a2+b2)

0 Chapter

Exercise 3A

3

1. (a) (i) 0,1,2,3,4,5

(ii) 0, 1,2, 3

(b) (i) 0,1,2,3,4,5,6,7,

8, 9, A, B

(ii) 0, 1, 2, 3,4,5,6,7,8,9,A, B, C, D, E

2. (a) (i) 19
(b) (i) 313
(c) (i) 646

(d) (i) 74

(e) (i) 3494
(f) (i) 1613

3. 124

4. 999

Exercise 3B
1. (a) (i) 111110

(b) (i) 351

(c) (i) 687
(d) (i) 4AF

2. (a) (i) 221

(ii)
(ii)
(ii)
(ii)
(ii)
(ii)

(ii)
(ii)
(ii)
(ii)

(ii) 1000111100
(b) (i) 1000111100

(ii)1102012C
(c) (i) 3226

(d) (i) 5E6

3. 888888

Exercise 3C
1. (a) (i) 443

(b) (i) 1693

)

(ii)
(ii)

(ii)
(ii)

50
182
1425

199

436

287

20220
1321
2A1
BBC

31E
170B

410
BAO

2. (a) (i) 1065

(b) (i) B2C

3. (a) 7
(b) 2,3,4,6,12

(c) ends in 00

(ii) 2505
(ii) 3678

4. (a) 0,7
(b) sum of digits divisible by 13

(c) (k,m)
= (0,0), (0,D), (7,6)

Mixed examination practice 3

1. (a) 94 (b) 59F

2. (a) 1010101100101111
(b) 100

3. (a) 120064

4. (a) 314

(b) 211211
(c) 7056

5. (b) The sum of the digits is divisible by 5

(c) (\302\253,&)
= (3,0), (0,3), (5,3)

6. (a) 6170

Chapter 4

Exercise 4A
1.6 and 9 are both divisible by 3, but 137 is not

2. (a) x =2,7=1
3. (b) k = 0

4. Equation 15 + 9x + 9y = 2007 has no solution

Exercise 4B

1. a,c,d,f

2. (a) (i) x=
l,y

= -2

(ii) x = 2,y =-3
(b) (i) x = 5,y = -7

(ii) x = 29y = \342\200\2243

3. (a) (i) x = 2,y = \342\200\2246

(ii) x = l,y = -l
(b) (i) x =

3,y
= -6

(ii) x = -3,y =9

4. (a) 3

(b) 3 28

5. (a) 6
(b) Multiples of 6

(c) x = 3,y =-5 (other answers are possible)

6. (a) gcd(?t,5)=l
(b) x = 3,y = -7 (other answersare possible)

Answers
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Exercise 4C

1. (a) (i) jc = 1 + 4^,7 = -2-9fc
(ii)x =2+ 7^,7

= \342\200\2243\342\200\224llfc

(b) (i) jc = 3 + 12k,y = -7 -17fc
(u)jc=2+ 7fc,^

= -3-llfc

(c) (i) x = 2+10k,y
= -6-33k

(ii)x = l + 4k,y =-l-9k
(d) (i) jc = 3 + 4k,y = -6-9k

(ii)x=-3+ 7k,y
= 9-20k

2. (a) 6
(b) x =2-13fc,;/=4-27fc

3. (b) m = 9,n = 13
(c) x=9-3Sk,y=U-55k

4. (26 + 5^,-13-3^)

Exercise 4D

1. (a) x- -126,y = 84 (there are others)
(b) x = 2,;/= 4

2. (a) 2

(b) x = 6-37fc,;/=5-31fc
(c) x and 7 are positive for all k < 0

3. (a) jc = 3 + 13^,7 = -5-22fc
(b) (-10,17),(3,-5),(16,-27)

4. (a) Multiples of 3

(b) Yes, all integer weights

(c) All weights
> 117 and 59 others (investigate!)

Mixed examination practice 4

1. (b) ra = ll,n = -24
(c) x = 220 +27k, y

= -480 + 59fc

2. 51; no solutions as 51doesnot divide 41

3. (a) 3

(c) x = 25 + 37k,y
= -10-15k

4. (a) gcd(^,3)=l
(b) x = 2 + 3k,y = -l-4k

5. (a) m = 4, n = -1 (thereare others)

(b) jc = 4 + 3^,7 = -l-5fc
(c) x =1,7=4 and x = 4,jy = -1

B Chapter
Exercise5A
1.(a) (i) 10

(b) (i) 7

(c) (i) 4

2. (a) 1
(b) 3

(c) 1

(d) 0

3. (a) 1,4,7
(b) 3,8,13

5

(ii) 6
(ii) 2
(ii) 4

4. (a) 9
(b) 6

5. (a) Divisible by 3

(b) 6fc+l

Exercise 5B

i.

2.

(a) (
(b) (

(c) (

((a)

(b) (
(c) (
(d) (

) 5

) 0

2

(ii) 4
(ii) 0

(ii) 2

(ii) 4
(ii) 4

(ii) 3

(ii) 4

3. 2

4. 3

5. 5

Exercise 5C

1. (a) (i) x =6 (mod 11)

(ii) x = 6 (mod15)
(b) (i) x = 10 (mod 11)

(ii) x = 8 (mod 9)
(c) (i) x = 0(mod3)

(ii) x = 0(mod3)

(d) (i) x = 4(mod9)
(ii) x = 2 (mod 9)

(e) (i) x =0(mod3)
(ii) x = 4(mod8)

2. x = 4(modl3)

3. x= 4(mod7)

4. (a) 6x = 9k+4 is impossiblebecause3 divides 6x

and 9 but not 4.

(b) x = 2(mod3)
(c) -7,-4,-1,2,5,8

5. (a) * = 3,8,orl3(modl5)

(b) 7

6. a =2

Exercise 5D
1. (a) (i) x = 18 (mod 35)

(ii) x = 24 (mod 55)
(b) (i) x = 32 (mod70)

(ii) x = 21 (mod60)

2. (a) (i) x=215(mod209)
(ii) x = 201(mod286)

(b) (i) x = 542(mod630)
(ii) x = 225(mod408)

3. x = 5(mod21)

4. x=20(modl05)
5. (a) 3 (b) x = 3(mod35)

6. x =4(modl5)

1-
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7. x = 207(mod527)

8. (a) Show that x = 6a + 2 = 9a + 4 is impossible
(b) (i) ra = 5 + 3a, n = 3 + 2a

(ii) x = 4(modl8)

Exercise 5E
1. (a) (i) 9

(b) (i) 4

(c) (i) 1
(d) (i) 2

2. 4

(ii) H

(ii) 5

(ii) 1
(ii) 1

3. (b) JC = 5(modl3)

(c) x12= 1or 0 (mod13)by FLT

Mixed examination practice 5

1. 9

2. 6
3. x = 9(modll)

4. 1

6. (a) 4 (b) x =3(mod8)
7. Apply Fermats little theorem to find x12(mod 7)

8. (a) 24
(c) 31

9. x=28 (mod 65)

10. x = 82 (mod170)
12. (b) 1

(c) 183

13. (b) x = 16(mod341)
14. fc = 2,15,28,41,54

Chapter 6

Exercise 6B

1. Gl
4

5
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5

5
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G4

7

6

G5
3
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3
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2
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3
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1
1

0

0
0
0
1

0
1

0

0
1

0
1

1

0
0

0
1

0
0

0
0
0

^9 o

D '
\342\226\240filo

PR
o

El o

Q \302\260

|R o

HT>9B
\342\226\240uH

1

0

1

0

1

0

0

0
1

0
0

0
0
0

D
0
0
0
0
1
0
0

D
0
1
0
1
0
0
1

D
0

0

0

0

0

0

1

G

0
0
0
0
1
1

0

iga a

D '
D '

C 2

B

1

0

1

c

2
1
1

G6 A

E9 o

D '
Rl o

D '
|R o

B

1

0

1

0

1

0

1

0

1

0

D

1

0
1

0
1

E

0
1

0
1

0

Answers
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+<t.

5. (a) (i)

+c<

oL

6. (a) (i) A-2, B-3, C-2, D-2, E-2
(ii)A-3, B-2, C-2, D-3

(b) (i) A-4,B-7,C-3,D-7,E-7
(ii)A-9, B-5, C-3, D-3

7. There aremany possible answers, for example:

(a)

8. (a) A,D,E,G and B,C,F

(b) A,B,D,H and C,E,F,G

9. (a)

162 Answers
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o

(e)

+c<

oL

(There are other possibleanswers)

10. (a)

11. n = 9

12. (a) l,n-l
(c)

(b) A.

C

(b) Doesn't exist (odd number of odd vertices)

(c)

6. (a) 25
(b) e>3v-6

Exercise 6D
1. (a) (i)

C ^i-V** + Oi.

Answers 163
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a
b\302\273*V^T7

*
^r,

+\302\243i

(b) (i)

2. (a) I

HI

I

A
|

B
|

C | D

0

n

0

l

n

0

l

0

0

1

0

1

1
0
1
0

(b) A BCD

9 o

]
3 o

3 \302\260

i

0

0

1

0

0

0

1

0
1
1

0

3. (a)

1-

A?

164 Answers
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h 1 +1.

+1,

4. (a)

5. There are many possible answers

6. (b) At least one group of vertices must have at

least 3 vertices, so in the complement there

will be cycles of length 3.

Exercise 6E

1. (a) ABCD, ADBC, ADCD, ADAD

(b) AECD,ADAD, ADCD, ABCD, ABAD, AEAD

(c) ADAD, ACAD

(d) AABD,AAAD

2. (a) ABCDA

(b) ABCDA, ABCEA, ADCEA

(c) None
(d) None

3.

4.

(a)

(b)
(c)

(a)
(b)
(c)

2
2
0

2
4
20

Exercise 6F

i.

2.

(a)
(b)
(c)
(d)

Eulerian

Semi-Eulerian

Semi-Eulerian

Neither

(b) and (c)

3. (a) Four vertices have odd degree
(b) SMNPQNRQMRS

4. There are two vertices of odd degree;
YWXVYZWUVZ

Exercise 6G

1. (a) AFGHEDCBA

(c) ABCFEHGDA

2. (a) (i) ABCDA

A

(b) ADBFCEA

(d) ABCDEFGHA

(ii) ABCDEA

(b) (i) AEBFCGDHA

ABCD

E F G H

(ii) ADBECFA

3. 6

A?
- *

v*,>r
n-,

+ Oi..

Answers
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+1,

Mixed examination practice 6

1. (a) A,

(c) ABCDA, ABDCA, ACBDA

2. (a) G2;degreesare all even:

2,4,2,4,2

(b) ABCDEBDA

3. (a)

A

B

C

D

E

A

\302\253

o

o

1

1

a

0

0

l
l
l

c
0
1
0

1

0

D

1

1

1

0

0

a
1
1
0
0
0

(b) BCBC, BCBD, BEBD, BEAD

6. (a)

(n
\342\200\224

l)
= n \342\200\224l

7. (c) (i) (n, d) = (1,6),(2,5),(3,4),(5,2)or(6,1)
Note: (n9d) = (4, 3) not possible

(ii) n = l9d = 6 n = 2,d = 5

^P
n = 3,d = 4 n = 5,d = 2

n = 6,d=l

CN

8. (c) Yes; all vertices have degree 4,which

is even.

9. (b) v-e +f = 3

Chapter 7

Exercise 7A

1. (a) (i)

-

7

8

-

12

7

-

-

-

13

8

-

-

-

8

-

-

-

-

4

12

13

8

4

-

-5-75
5-5-7
-5-57
7-5-5
5 7 7 5-

(b) (i)

-

3

4

-

-

6

3

-

-

1
-

6

4
-
-
-

2

7

-

1
-
-
-

4

-

-

2
-
-

-

6

6
7
4
-

-

(ii)

- 4 5 4 - -

4 - - - - -

5 - - - 4 3

4 - - - - 3

- - 4 - - -

- - 3 3 - -

2. (a) (i)

10 WC

^

166 Answers

^ ^ C ****** + Oi..



4. (a) ABCDEA, ADCBEA, AEBCDA,AEDCBA

B 4 C

(b) ABCDEA

5. Length
= 76

6. All vertices are even;31

7. (a) B and F have odd degree,
(b) (i) BF (ii) 59

Exercise 7B

1. (a) (i) AB, BC, AD, BE (or CE);weight
= 41

(ii) AD, AC,BC,AE; weight
= 28

(b) (i) BG,EH,CD,ED,BH,AB, FG;

weight
= 141

(ii) AG, BC, ED, BG, GD, AF; weight
= 30

(c) (i) RS,RP (orPS),SK, SL, LM, RQ, PN; weight

= 47

(ii) PW, PU, PY, PT, PV, PS (or WS), TX, YZ;

weight
= 91

2. (a) (i) BD,BC,AD, ED; weight
= 24

(ii) AD, AB, BC, AE; weight = 52
(b) (i) ED,FG, DG (or EF), CG, AC,BD;

weight
= 120

(ii) EF, ED, AB, EG, AC, BD; weight = 155
(c) (i) EF,AB, CF, BC (or BE), AD; weight

= 21

(ii) DF, FC, CE,AB, BE (or DE); weight = 19

3. (a) BD, CD, CE, AB, AF (or EF)

(b) Add CF first, then start Kruskals algorithm.

4. (a) Treeof least weight which includes every
vertex,

(b) BD,AC, AE, AF, BE; weight = 45

5. (a) n-1
(b) It has to be at least 8 + 9 + - + 18 = 143

6. (a) 49
(b) 58

7. x>18

Answers
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+1,

Exercise 7C
1. (a) (i)

|K)7
A- -D

3/ X5

MB
3|4|5

c-

mrj H

4\\ X3

-E
6\\8\\B\\

SCEF; 7, 8, 11

(ii)

S5DFF;14,19,22

(b) (i)

7 |12|D|

2|4|S
u

SC5DF; 8, 8, 12

\\5\\6\\S
6

F IP

SBDEF; 4, 8, 10

(c) (0
2|4|S
4

6 115| 5

^ 15

V 4 8 |A/S
8

5

3 | 7 | S
7

V /
\\ /7

*E
5 12 C

12

SBDF or SC\302\243F;15,12,19

(ii)

2|4|g

m c
uss

4X

\\

V
7 V

c-
3|6|S
6

JD

4\\7\\S
7

V^L2

8

<^9

15

|5|15|5/C|
>615
n 7
u -F

\\ A /

7|22|D
22

V /
\\/

\302\243/

6ll9|D
2419

4

SBDF or SCDF;15,19,22

2. (a) (i) SCFT (ii) S5DFT

(b) (i) SVQT (ii) SBDTor SABDT

3. (a) (i) SCF (ii) SCF
(b) (i) SBGJF or SBCDGJF (ii) SQ5FF

4. (a) SCQRHKM or SBQRHKM or SBPRHKM;
cost = 21

(b) 17

5. (a) 21 (A5FFG)
(b) ACDEFG

6. jc=1

Exercise 7D
1. (b) (i) 50 (ii) 32

(c) (i) e.g.CDEFABDAEBC

(ii) e.g. CDFFAFCA5C

2. (a) (i) VerticesD and F have odd degrees
(ii) VerticesD and G have odd degrees

(b) (i) e.g.ABDEFBEGCDEFGA;70

(ii) e.g. ABCEHGFDFGEBDA; 40

3. (a) (i) A,B,E,G
(ii) B, D,F,G

(b) (i) 78, repeat AB and FG

(ii) 107, repeat BE,EF and DG

4. (a) 0,C
(b) 9

(c) 87

A;

168 Answers
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h 1 +<J-

5. e.g. CBDFDBAJIHGFHJCFEDC(length 9.1)

6. (a) 99

(b) 131

7. (a) e.g.AFGAEGBHEDHDCBA, length
= 208

(b) 230

8. (a) C and F have odd degrees
(b) CEF(15)
(c) e.g.CEFECDEBACFDBC, length

= 180

(d) (i) 156

Exercise 7E
1. (a) (i) 36

(b) (i) 63

(c) (i) 103

2. (a) (i) 32

(b) (i) 56

(c) (i) 95

(ii) C and F

(ii) 85
(ii) 99

(ii) 110

(ii) 77
(ii) 82

(ii) 104

3. (a) ABCDA, ABDCA, ACBDA, ACDBA, ADBCA,
ADCBA

(b) L= 45

4. (a) The cycle AC&EDA has length 29.

(b) 28

(c) 26

5. (a) 40

(b) 40

(c) Upper and lower boundsare equal.

Mixed examination practice 7

1. (a) A tree of minimum length which contains

every vertex

(b) BH,NF, HN, HA, BE, CN (weight
= 48)

2. (a) Add edges in order of increasing length,
skipping any that would create a cycle.Stop
when all the vertices are connected,

(b) EF, BC, CG, I], BJ, AB, EG, CH,DE
(weight =117.5)

3. (a) There are severalpossibleanswers: the length
of any cycle, e.g. ABCDEA gives 73;

doubling the weight of the minimum spanning
tree gives92;
5 X the maximum weight of the edgesgives 95.

(b) (i) A _ 10
At

11

(ii) weight
= 33; LB = 60

4. (a) 114
(b) 89

(c) 89<L<114

5. (a) ACGJ, length
= 55

tB

12

Ad

(b) 84 (ACFIJ)

(c) ACFJ/(84)

6. 276

7. (a)

(b)
(c)
(d)

8. (a)
(b)

9. (a)

(b)

(c)

10. (a)

(b)

11.(a)
(b)

1 and 8 have odd degrees
1-3-5-8 (length =12)

66

A, B, C,D
length

= 92, repeat AE, EB, CG,GD

There are vertices of odd degree.
890(repeat AE, ED)

AandD

(i) There arevertices of odd degree.

(ii) No; there aremore than two vertices of
odd degree,

(i) We add one edge between each pair of
adjacent vertices, so now all vertices have
even degrees,

(ii) 306 km

33

The edges includedin the lower bound form a

cycle.

Chapter 8

Exercise 8A
1. (a) 1,5,21,85,341

(b) 3,1,3,1,3

(c) 1,2,2,4,8
(d) 2,4,12,48,240

Exercise 8B
1. (a) (i) 2\"+l (ii) 2\"

(b) (i)
~(-3T+\\

2l3 J 2

(ii) 33|
-

| -3

-I HL \\*.n-urn-l2. Un

3. It gives d = 0

4. (a) 8,48,248

Answers
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h 1 +1'i'

(b) w\342\200\236=2x5\"-2

+1,

5. (a)

(b)
w\342\200\236=cx2\"

W\342\200\236=l

+ 1

Exercise 8C

1. (a)

(b)

(c)
2. (a)

(b)

3. (a)

(b)

4. (a)

(b)

5. u\342\200\236--

6. (a)

(c)

(d)

w\342\200\236=2\"+3\"

\302\253\342\200\236=2\"-(-2)\"

m\342\200\236=5+ 2\"+1

u\342\200\236=(\302\253
+ l)2\"

u\342\200\236
= 3 + 2\302\253

h, =-3(l + i)\"-3(l-i)\"

u\342\200\236=(l + 2i)(l + 3i)\" +(l-2i)(l-3i)

u\342\200\236
= 2 cos

\302\253!=-6, h2 =\342\200\22412

w\342\200\236=-6^) Sin(^j

\342\226\240$+tf+$-*r

12

fl,=4--(-2)-
6B=4-+(-2)-

Exercise 8D
i- \302\253\342\200\236+i

\302\25315

= 1.04^,^=1000,

= 1800

2. \302\253\342\200\236=40 000(1.05\"-1)

3. (b) un =35000-18812(1.01\

(c) 62 months

4. (b) ux
= 1, u2 = 2

(c) 233

5. (a) \302\243n+2=-(tn+1+0

(b) tn =23 + 16 \342\200\224

(c) tn approaches 23, being alternately above and

below that value.

6. (b) 1

7. (b) ul=2yu2=3

(c) 2584

8. (a) Hx
= 1, H2 = 3

(c) Hn=2\"-1, 1023

9. (b) 130

(c) 1288

(d) \302\243>50

Mixed examination practice 8

1. un
=

\\&~l-\\)4
2. (a) nn=0.92ivi

3.

4.

5.

6.

7.

(b) 11 years

un=3\"~l

un=(3-n)(-2)\"

w\342\200\236=(2-i)(3i)\"+(2 + i)(-3i)\"

,\342\200\236=3+

4(-lJ

(a) (i) un_lyun_2

(ii) un_x-un_2

(iii) 9un_2+(un_1-un_2)
(b) (i) 4

(ii)
I(4--(-2)-)

8. an=-(l-3\"\"2)

Chapter 9

Mixed examination practice 9
2. (a) 2 and 4

(b) (i)

(ii) Both are Eulerian; ABCDEA,
ABCDEACEBDA

(c) ABCDE

3. (b) ak
\342\200\224

ak_x + ak_2
\342\200\224

ak_3 +... is divisible by 11

(c) 22,55,88

4. (a) 122
(b) x = 2(mod5)

5. (a) It is a graph containing all the edges which are

not in the original graph,

(b) 9

6. (a) (i) A graph with two sets of verticessuch

that the vertices from the same set are not

adjacent,

(ii) The number ofedgesstarting from that

vertex,

(b) K is bipartite

^

170 Answers

^ ^ C ****** + <*..



o
h 1

+ o

+c<

(c) EDCABC

7. (b) x =14(modl7)
(c) x = 31 (modi87)

8. (b) (i) 9 (ii) 9

9. (b) A5CDA,A5DCA,AC5DA

(c) L = 37 (A5DCA or AC5DA)

10. (b) RS (c) e.g.PQflSl/V

11. (a) m = \342\200\2241,n = 2

(b) (i) jc = -104 + 8^,7 = 208-15k
(c) x=3,18,33,48,63,78(mod90)

12. (a) (10 vertices so 9 choices)

Choice
1

= 2

= 2

= 4

= 4

6
=7
=7

9
Total weight

=

(b) 48

(d) 1814400

Edge
HP

KQ

QF

FE

PB

ER

PQ
BC

CD

31

Weight

1

2

2

3

3

4

5

5

6

13. (a) Vertices S and T have odd degree.
(b) 13(SBEGT)

(c) 61; ASBSCEBEGTG

EDTFDBA

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

(b)

c)
d)

e)

a)

b)

a)

b)

c)

d)

Vertices from the two sets alternate, so any

cycle must have an even number of vertices.

It has cyclesof length 3 and 5.

A Hamiltonian cyclewould have 7 vertices,
which is odd.
m = n (because the vertices in a cycle alternate

between the two sets).

All four vertices have odd degree
34

6
66 and 42 are even, 9 is not
m divisible by 6

x = 6-7k,y = -9 +llk

c) 281502 (taken =100)

b) (i)

a) AB, BC, AI, DE, DG, DF, (orEFor EG),BD,
IH;weight

= 84

b) 3

a) x = 2(mod5)

b) 10; there is a unique solution (mod 55)

a) -1,17,11,113,179
b) un=3n+2(-2)n

a) CF,EF,BC,CD,AB

b) (i) v-1 (use v+/=e +2with/=l)
(ii) v \342\200\224c

b) (i) AB,AD,DE,BC
(ii) 12m

c) (i) Each vertex has degree 4, which is even,

(ii) ABCDEACEBDA, 46

a) CD,AB,BC,BF,CE
b) (i) 213

(ii) 239

(iii) 239

c) 239<L<253

b) un =2100-1000x1.05\"

c) 16 years

A? K ^V**** + Ql.. \302\253-
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Glossary

)

Words that appear in bold in the definitions of other termsarealsodefined in this glossary The

abstract nature of this optionmeansthat some defined terms can realistically only be explainedin

terms of other, more simple concepts.

1-

Term
adjacency table

Definition

A table showing which vertices in a
graph are joined by edges.

Example
The following table shows that the

edges of the graph are AB and BC:

A

B

C

A

0

1

0

B

1

0

1

c
0
1
0

adjacent (ofverticesoredgesin a graph)

joined to each other.
Two vertices are adjacent if they
are joined by an edge; two edges
are adjacent if they arejoinedby a

vertex.

algorithm A specified sequenceof steps

guaranteed to answer a certain
question.

Kruskals algorithm is a sequence
of steps guaranteed to find the

minimum spanning tree of a graph.

auxiliary equation A quadratic equation used in

solving a secondorderlinear
recurrencerelation.

The recurrence relation

un+2
= un+l +2un has auxiliary

equation A:2 = k + 2.

base 10 A system for writing numbers using
ten digits, 0 to 9,where moving

a digit a place value to the left
increasesits value ten times.

In base ten, the '3' in 438has value

3X10 = 30.

base cases Initial cases that need to be tested in

order to start a proof by induction.

bipartitegraph A graph whose vertices can be split
into two groups such that only
vertices from different groups are

joined.

Chinese postman problem To find the route of shortest length
which includes everyedgeof a

graph and returns to the starting

point.

In an Eulerian graph, every
Euleriancircuitisa solution of the

Chinese postman problem.

Chinese remainder
theorem

A result about the existence of
solutionsof a system of linear

congruences.

Accordingto the Chinese remainder

theorem, the system of congruence
3x= 5 (mod7),2x= 1 (mod 9) has a

unique solutionmodulo 63.
circuit A closed trail.

complement (of a graph) A graph consisting of all the edges
that were not in the original graph.

If a graph has 4 vertices and 2 edges,
its complement has 4 edges.

complete bipartite graph A bipartite graph where every vertex
in one group is joinedto every

vertex from the other group.

The complete bipartite graph K3 3
is

not planar.

complete graph A graph in which every pair of
vertices is joined by an edge.

A complete graph with 4 vertices
has 6 edges.

rsM
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Term | Definition | Example

composite An integer that is not prime. 15isa composite number because

\342\226\240 i 15 = 3x5.

congruent modulo 12

connectedgraph

constantcoefficients

(equation with)

cycle

degree (of a vertex)

degree sequence

Dijkstra's algorithm

Diophantine equation

directproof

directedgraph (or digraph)

divisibility test

division algorithm

edges

Euclid'slemma

Euclidean algorithm

Euler's relation

When two numbers give the same
remainder when dividedby 12.
A graph in which it is possible to
find a path from any vertex to any

other vertex.

An equation in which coefficients
do not depend on n.

A closed path.
The number of edges coming out of
the vertex.

The list of degrees of all the vertices
in a graph.

An algorithm for finding the
shortest path between two vertices

in a graph.

An equation where we are only
looking for integersolutions.

A proof where a new fact is derived
by calculation or reasoning directly
from previously known facts.

A graph in which each edge has a
specifieddirection.

A test for determining whether
one integeris divisible by another

without carrying out the division.

Theprocessof finding the quotient
and remainder when dividing two

integers.

'Lines' connecting vertices in a
graph.
A statement about prime numbers,

saying that if a prime divides a

product then it must divide both
factors.

A method for finding the greatest
common divisorof two integers

without explicitly finding all their

prime factors.

A rule giving a relationship between
the number of edges,vertices and

number of regions of a planar graph.

5 and 29 are congruentmodulo 12.

The recurrence relation un+l =nun
does not have constant coefficients.

The degree sequence is important
in determining whether a graph is

Eulerian.

Some Diophantine equations can

be solved by looking at factors
and divisibility. For example, the

equation 2n2 + 4n = 5 has no integer

solutions because the left side is
even and the right side is odd.

We can prove that (a
- b) (a+b) =

a2 - b2 directly by expanding
brackets and simplifying.

A directed graph could be used to

represent a network of one-way
roads.

We know that 475 is divisible by 5
becausethe units digit is 5.

We can write 23 = 4 X 5 + 3.

We often use Euclid'slemma in

proofs involving factorising.

We can useEuclidean algorithm in

to find a particular solutionof a

Diophantine equation.

A complete graph with three

vertices has v = 3,e=3,/ =2,and

satisfies v \342\200\224e + f = 2 .

Glossary



Term | Definition | Example

Eulerian circuit

Eulerian graph

Eulerian trail

Fermat'slittletheorem

first order recurrence

Fundamental Theorem of
Arithmetic

generalsolution

graph
greatestcommondivisor

(gcd)

greedy algorithm

Hamiltonian cycle

Hamiltonian graph

Hamiltonian path

homogeneous equation

indirect proof

inductive step

Kruskal's algorithm

least common multiple

linear congruences

A closed trail around a graph which
uses each edgeexactly once.

A graph that has an Eulerian
circuit.

A trail which uses each edge exactly
once,but does not return to the

starting point.

A result allowing us to find the

smallest power of a number which

givesremainder 1when divided by

a prime.

A recurrence relation in which each
term in a sequencedepends on one

previous term.

The result stating that every positive

integer can be written as a product
of prime factorsin exactly one way.

An expression describing all

possiblesolutionsof an equation.

A set of points connectedby lines.

The largest integer which divides
two given integers.

An algorithm in which the best

possibleoption is chosenat every

stage.

A closed path which includes every
vertex of a graph.

A graph which has a Hamiltonian
cycle.
A path which includes every vertex
of a graph.
A linear recurrence relation with

no constant term.

A proof where a new fact is derived
using previously known facts, but

not in a direct way.

A part ofproofby induction where

we show how, if we have already
proved the statementup to a certain

value of n, we can use this to prove it

for the next value of n.

An algorithm for finding the
minimum spanningtree of a graph.

The smallest integer which is
divisibleby two given integers.

Equations in which we are only

interested in remainders, rather than

the actual numbers.

Every Eulerian circuit isa solution

to the Chinese postman problem.
An Eulerian graph can be drawn
without picking up the pen and
without repeating any edges.

A graph which has an Eulerian trail

is called semi-Eulerian.

1512= l(modl3)

A geometric sequence can be
described by a first order recurrence

relation.

30 = 2 X 3 X 5 and there is no other

way to write 30 as a productof

prime numbers.

The general solution of the

Diophantine equation x + y = 5 is
x =

t,y
= 5-t (teZ).

The greatestcommon divisor of 12

and 42 is 6.

Kruskals algorithm is an example
of a greedy algorithm, whereas

Dijkstras algorithm is not.

The travelling salesman problem

is to find the shortest Hamiltonian

cycle in a graph.

Every complete graph is

Hamiltonian.

The recurrence relation un+1
= un+2

is not homogeneous.

Proof by contradictionis one

example of indirect proof.

Theleast common multiple of 6 and

9 is 18.

Thelinear congruence

3x = 6 (mod 7) is satisfiedby all

integers which give remainder 2 when
dividedby7.

Glossary



Term
|

Definition | Example

linear recurrence relations A recurrence relation in which the The recurrence relation u , = u2 is
n+l n

terms of the sequence appear as not linear.

loop

lower bound

minimum connector
problem
minimumspanningtree

modular arithmetic

multigraph

particular solution

path

permanent labels

pigeonholeprinciple

planar graph

prime factorisation

prime number

proof by contradiction

proofby induction

quotient

recurrence relation

relatively prime
(orcoprime)
remainder

Route inspection

linear terms.

(in a graph) An edge connecting a

vertex to itself.

A number which is known to be
smaller than (or equal to) the

desired solution.

To find the shortest tree containing
all the verticesof a graph.

The tree of smallestlength which

contains all the vertices of a graph.
Rules for calculating with

remainders.

A graph where some edges are
connectedby more than one vertex.

One possible solution of an

equation.

A walk with no repeatedvertices.

(in Dijkstra'salgorithm)A number

assigned to a vertex showing the
shortestpossibledistance from the

starting vertex.

A principle stating that if n + 1

objects are divided into n groups,

then there must be a group
containing at least two objects.

A graph that can be drawn without

edges intersecting.

Writing a number as a productof its

prime factors.

An integer that has exactly two

factors - 1and itself.

A method of proving a statementby
showing that assuming its opposite
leads to impossibleconsequences.
A 'step by step' method of proving
that a statement is true for all
natural numbers.

The (integer part of the) result of

dividing two integers.

A relationship showing how a term
in a sequencedepends on previous

terms.

Two integers whosegreatest
commondivisor is 1.

The amount left over when we try to

divide one integer by another.

Sameas Chinesepostmanproblem.

A lower bound for the travelling
salesman problemcanbe found

by removing one vertex from the

graph.
The minimum connector is the same
as the minimum spanning tree.

Minimum spanning tree can be
found using KruskaPs algorithm.

If x gives remainder2 when divided

by 6 and y gives remainder 3, then

x + y gives remainder 5.

x =2,y = 3 is one particular solution
of x + y = 5.

We can use the pigeonhole principle
to show that every graph contains

two vertices with the same degree.

The complete graph fc5 is not

planar.

50 = 2x52

5 is a prime number, but 1 is not.

It can be provedby contradiction

that V2 is an irrational number.

You used proof by induction in the
Core syllabus to proveDeMoivres

Theorem.

The quotient when 23 is dividedby
5 is 4.
un+2

- un+\\un is an example of a
recurrencerelation.

12 and 35 are relatively prime.

Theremainder when 23 is divided

by 5 is 3.

Glossary



Term
|

Definition | Example

Route inspection algorithm An algorithm for solving the
Chinese postman problem.

secondorderrecurrence

semi-Eulerian graph

simple graph

strong induction

subgraph

temporary label

The Handshaking lemma

trail

travelling salesman
problem

tree
upper bound

vertices (vertex)

walk

weight

weighted graph

A recurrence relation in which each
term in a sequencedepends on two

previous terms.

A graph that has an Eulerian trail.

A graph which has no loops or
multiple edges between vertices.

A variant on proof by induction
where we need to use more than one

previous value of n in the inductive

step.

A graph which is a part of another

graph.

(in Dijkstra's algorithm) A number

assigned to a vertex showing the
shortestdistance from the starting

vertex found so far.

The result stating that the sum of

degrees of all the vertices in a graph
is equal to twice the number of

edges.

A walk with no repeated edges.

To find the route of shortest length
which includes everyvertex of the

graph and returns to the starting

point.

A graph with no cycles.
A number which is known to be

larger than (or equal to) the desired
solution.

'Points'in a graph.

Any sequence of adjacent edges.
A number associated with an edge
in a graph.

A graph in which each edge has an

associated weight.

The Fibonacci sequence can be
describedby a second order

recurrence relation.

In a semi-Euleriangraph we can

solve the variant of the Chinese
postmanproblemwhere we do not

need to return to the starting vertex;

the solution is any Eulerian trail.

Many theorems in this course apply

only to simple graphs.
In this Option we use strong
induction to prove Euler s relation

for planar graphs.

The minimum spanning tree is a

subgraph.

TheHandshakinglemma implies

that the number of odd vertices

in a graph has to be even.This is

important in the Route inspection
algorithm.

Visiting every town in a region
in the shortestpossibletime is an

example of a travelling salesman

problem.

A tree with 10 vertices has 9 edges.
An upper bound for the travelling
salesman problemcanbe found

using the nearest neighbour
algorithm.

Theweight of an edge could

represent the cost of travelling

between two vertices.

A weighted graph could represent a
road network with weights being the

lengths of the roads.

Glossary



Index

adjacency tables, 70, 74-75, 95, 98-99,172
adjacent(ofvertices), 69,172

algorithm, defined, 172
arithmetic

in different bases, 36-39
Fundamental Theorem of, 27-28

see alsomodular arithmetic

auxiliary equation, 140-42,172

base 10,33-35,40,172
base cases, 10,11,172

strong induction, 73-74
bases,33-35

arithmetic in different, 36-39

changing between different, 35-36

exercises, 34-35

mixed exampractice,41
summary, 40

binary numbers, 33, 34
bipartite graph, 72, 95,172

Cantor's diagonal proof, 5

Chinese postman algorithm, 113

Chinese postman problem, 112-14,125, 172
exercises,115-18

Chinese remainder theorem, 59-61, 65, 172
exercises,61-62

circuit, 87, 95, 172

Eulerian,90,112

complement(ofa graph), 85, 95,172

exercises, 85-87, 97
completebipartite graph, 72,172

complete graph, 72,95,172
and Hamiltonian cycle, 93,118-19

planar graph proof, 82-83

subgraph of, 85
complexroots, recurrence relations, 141

composite numbers, 26,28,173
divisibility by, 63-64

congruences
linear, 57-59
simultaneous, 59-62

congruent modulo 12, 51,173
congruent modulo m rule, 53-54
connectedgraphs, 71, 95, 173

exercises, 78,85
planar graph proofs, 81, 83-84
treesas,73-74

constant coefficients, linear recurrences, 136,139,173
constraints, solutions subject to, 47-48
contradiction, proof by, 3,4-6, 7, 28,29,175
coprime (relatively prime) numbers, 20, 21,23,26,175

Chinese remainder theorem, 60, 61, 63
division rule, 56

cost adjacency matrix, 98, 101, 109,130

cycle, 73,95,173
Hamiltonian, 93,118-21
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decimal(base10)system, 33-34

degree (of a vertex), 70, 95, 173
and Chinese postman problem, 112-14
Eulerian graphs, 89-91

theorems, 79-80

degreesequenceof a graph, 70-71, 173

digraph, 69, 95,173

Dijkstra's algorithm, 106-12,173
fill-in diagrams, 131-33

Diophantine equations, 1,42-43,49,173
finding number of solutions for, 44-46
general solution, 46-47

solutions subject to constraints, 47-48

direct proof, 3, 173
directedgraph, 69,173

Dirichlet's principle, 6

divisibility tests, 14-17, 38-39, 40, 173
division algorithm, 14, 31, 173

division/divisibility

by a composite number, 63-64
and linear congruences, 56-59

and remainders,51-52
of whole numbers, 13-19

duodecimal (base 12)system, 34

edges, graphs, 69, 70,95,173
theorems involving, 79-85

equations with integer solutions, 42-43

Euclidean algorithm, 23-25, 31, 173

Euclid's lemma,26,28,173
Eulerian circuit, 90, 95, 112,174
Eulerian graphs, 89-92, 95,174
Eulerian trail, 90-91, 95,174

Euler's relation, 80-82, 83,95, 173

factors, 13-18

Fermat numbers, 12
Fermat's Last Theorem, 2,43
Fermat's Little Theorem, 62-64, 65, 174
Fibonaccisequence

example of a second order recurrence,134
formula for the nth term, 140
for modelling population growth, 144-45

proof by strong induction, 9

first order linear recurrence relations, 136-39,174

modelling a savings accounts, 143-44

Fundamental Theorem of Arithmetic, 27-28, 31, 174

general solution, 46-47, 48, 49,174
recurrence relation, 137,140

graph algorithms, 98
Chinesepostman algorithm, 112-18

Dijkstra's algorithm, 106-12
Kruskal's algorithm, 102-6

minimum spanning tree, 102-6
mixed exam practice, 126-30

Route inspection problem, 112-18
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shortest path, 106-12
summary, 124-25

travelling salesman problem, 118-24
visiting all the vertices, 118-24

weighted graphs, 98-102

graph theory, 2, 67-69
Eulerian graphs, 89-92

Hamiltonian graphs, 93-94
important theorems, 79-85

mixed exam practice,96-97
moving around a graph, 87-89

subgraphs and complements, 85-87

summary, 95
terminology, 69-78

greatest common divisor (gcd),19-23,31,174

exercises, 23, 25

method for finding, 23-25

greedy algorithm, 102,174
Green-Taotheorem, 29

Hamiltonian cycle, 93, 95,174
exercises,94, 96, 99,101

travelling salesman problem, 118-21
Hamiltonian graphs, 93-94,174

Hamiltonian path, 93,174
Handshaking lemma, 79, 176

homogeneous (recurrencerelations), 139,174

solving second order, 142

indirect proof, 3,174

inductive proofs, 3, 9-12, 18,73-74,135
inductive step, 10,174

integers

divisibility of, 13-18, 63-64

representation in different bases, 33-39

solutions of equations, 42-44

see also prime numbers

introductory problem, 1, 149

irrational numbers, proof by contradiction, 3,4

Kruskals algorithm, 102-4, 124,174
exercises,104-6,126-27

labelling, Dijkstra's algorithm, 107-9

law of excludedmiddle, 4

least common multiple (1cm),21-23,31,174
linear congruences, 57-59,174

linear Diophantine equations, 42-44,49,173

determining if solutions exist, 44-46
finding the general solution, 46-47
mixed exam practice, 50

solutions subject to constraints, 47-48

linear recurrence relations, 136-39,143-44,175
logic,2
logistic maps, 136

loop (in a graph), 70,175

lower bound, 119-22,125,175

methods ofproof, 3

pigeonhole principle, 6-8

proof by contradiction, 4-6

strong induction, 9-12
minimum connector problem, 102,175

Index

minimum spanning tree, 102-6,175

mixed exam practice,151-57
algorithms on graphs, 126-30

Diophantine equations, 50

divisibility and prime numbers, 32
graph theory, 96-97

modular arithmetic, 66
recurrencerelations, 148

representing integers in different bases, 41
modular arithmetic, 51-52,149,175

Chinese remainder theorem,59-62
division and linear congruences, 56-59
Fermat s little theorem, 62-65

rules of, 53-56
summary, 65

multigraphs, 70,175

multiples, 13-18

nearest neighbour algorithm, 119,120,121

exercises, 123-24,127
network modelling see graph algorithms; graph theory

non-constructive existence proof, 8
number systems, 33-34

number theory, 1-2
Euclidean algorithm, 23-25

factors, multiples and remainders, 13-18

greatest common divisor, 19-21

least common multiple, 21-23
prime numbers, 26-29

Occam's razor, 137
optimisation problems, graphs, 2, 67-68

minimum spanning tree, 102-6

shortest path between two vertices, 106-12

shortest route around a graph, 112-18

shortest route visiting all the vertices, 118-24

particular solution, 46,48,49,175

path, 87, 88,95,175
closedpath (cycle), 73, 74, 75
Hamiltonian path, 93

permanent label, 107,108,109,124-25,176
pigeonholeprinciple, 6-8,175

simple graph proof, 71
planar graphs, 74-75, 80-85, 95, 175
population growth, modelling, 144-45

powers
factors of integer, 16, 31

modular arithmetic, 55,62-63,64

prime factorisation, 26-27, 28, 175
prime factors, 21-22

Prime Number Theorem,28
prime numbers, 26-30,175

relatively prime, 20,21,23

proof by contradiction , 3,4-6, 7,28,29, 175

proof by induction, 3

divisibility example, 18

recurrence relations, 135
strong induction, 9-12

Pythagorean triples, 43

quadratic equation see auxiliary equation
quotient, 14, 175
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Ramsey's theorem, 8

recurrence relations, 2,134,147, 175
applications of, 143-47

defining sequences, 134-36
first order linear, 136-39

mixed exampractice,149
secondorder quadratic, 139-43

summary, 148
recursive definitions of sequences, 134-36

reductio ad absurdum, 4

relatively prime (coprime) numbers, 20,21,23, 26,175

division rule, 56
and Fermat s little theorem, 63

remainders,13-18,175
Fermat's little theorem, 62-64

see alsomodular arithmetic

repeated roots, recurrence relations, 141-42

Route inspection algorithm, 125,176
Chinesepostman problem, 112-18

route optimisation seeoptimisation problems, graphs

second order recurrence,134,176
secondorder recurrence relations, 139-43,147

modelling population growth, 144-45

semi-Eulerian graph, 90-91, 95,176
sequences

defining recursively, 134-36

degree sequenceofa graph, 70-71

proofs by induction, 9-12
seealso recurrence relations

shortest route problems,graphs, 106-24

simple graphs, 70, 95, 176
complement of, 85

degree sequence of, 71
simultaneous congruences, 59-62

strong induction, 9-12,176
prime numbers proof, 27

recurrence relations proof, 135

tree proof, 73-74
subgraphs, 85-87, 95,176

minimum spanning tree, 102-6

temporary label, 107,108,109, 124-25,176

trail, 87,95,176
Eulerian, 90-91

travelling along the edges,112-24
travelling salesman problem, 118-24,176

tree, 73-74, 95,176
minimum spanning tree, 102-6

upper bound, 119-22,125, 176

vertex/vertices, 95,176

labelling of, Dijkstra's algorithm, 107-9
theorems involving, 79-85

visiting all: travelling salesman problem, 118-24
visiting all the vertices, 118-24

walks (around a graph), 87, 95,176
closed,89-90

weight (of an edge), 98,124,176
minimum spanning trees, 102-4

weighted graphs, 98-102,124,176
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